2 resultados para Solar batteries.

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charging of an undivided cerium–zinc redox battery by various current waveforms some of which mimic the output of renewable energy (solar, wind, tidal, biofuel burning) to electricity transducers is considered in this work, where the battery operates through diffusion-only conditions, and is discharged galvanostatically. Under reasonable assumption, the mathematical model developed enables the observation that the performance characteristic of the cells charged with a constant power input differentiates between the various current–charge waveforms, with cell geometry and electrode kinetics playing subtle, but significant, roles; in particular, high efficiency is observed for sunlight-charged batteries which are thin and suffer no corrosion of the sacrificial electrode, and which have already experienced a charge–discharge cycle. The performance characteristics of the systems are interpreted in the light of consequences for smart grid realisation, and indicate that, for a constant power input, the most matched renewable is biofuel burning with a current output that linearly increases with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable, safe and high performance solid electrolytes are a critical step in the advancement of high energy density secondary batteries. In the present work we demonstrate a novel solid electrolyte based on the organic ionic plastic crystal (OIPC) triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI). With the addition of 4 mol% LiFSI, the OIPC shows a high conductivity of 0.26 mS cm-1 at 22 °C. The ion transport mechanisms have been rationalized by compiling thermal phase behaviour and crystal structure information obtained by variable temperature synchrotron X-ray diffraction. With a large electrochemical window (ca. 6 V) and importantly, the formation of a stable and highly conductive solid electrolyte interphase (SEI), we were able to cycle lithium cells (LiLiFePO4) at 30 °C and 20 °C at rates of up to 1 C with good capacity retention. At the 0.1 C rate, about 160 mA h g-1 discharge capacity was achieved at 20 °C, which is the highest for OIPC based cells to date. It is anticipated that these small phosphonium cation and [FSI] anion based OIPCs will show increasing significance in the field of solid electrolytes.