6 resultados para Solar Plants

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

New Zealand is one of the world’s largest producers of dairy products and has a climate with high levels of solar radiation; however, the use of solar energy in the dairy processing industry has received limited attention. An examination of historical records found that the annual peak in New Zealand milk production and processing occurs at a time when solar radiation levels are increasing markedly. An F-Chart analysis was used to simulate the performance of large-area arrays of solar collectors and to determine their suitability for heating and cooling in a dairy processing environment. For the study four types of solar collectors were analysed: glazed flat plates, evacuated tubes, evacuated tubes with CPC reflectors and a building-integrated solar collector under development at the University of Waikato (UoW). It was found that of these echnologies, both flat plate and evacuated tubes with CPC reflectors could make useful heating and cooling contributions. Furthermore, the solar fraction was determined mainly by the collector area to storage volume ratio. Finally, it was found that the UoW building-integrated solar collector could make a significant contribution to energy use in dairies and may be an attractive future technology for the industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal storage systems have been operating in various European countries since 1985. Combined with solar collectors, these systems are known as ‘central solar heating plants with seasonal storage’ (CSHPSS). While these systems have been shown to be technically feasible, their cost is still too high to make them competitive with fossil fuels.

In Australia, we have quite different conditions to those countries where CSHPSS have been trialled. In general, we experience higher radiation levels, ambient temperatures and cooling loads. Our heating loads and energy prices are also usually lower. As a result, any evaluation of CSPSS operating in a European context may not be valid for Australian conditions. To the authors’ knowledge, no evaluation of these systems has been carried out for Australia.

This paper therefore attempts an initial assessment of these systems and their viability for Australia. The paper first describes the various types of CSHPSS and then reviews their current status. The performance of one type of CSHPSS operating in several locations of Australia has been predicted using a TRNSYS model. The simulations indicated that the design guidelines for Europe are inappropriate for Australia and would result in greatly over-sized systems.

An indication of the financial viability of the system was determined by calculating a simple payback period for a variety of fossil fuels. This type of seasonal storage systems appears to be financially attractive in areas of southern Australia where the solar system is displacing LPG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Zealand is a large producer and processor of primary products and has a climate with high levels of solar radiation. However, the use of solar energy for heating and cooling in the processing industries has received limited attention.
For this study, the design of a low cost solar collector is analysed and discussed. Furthermore, the methods for integrating the collector into water heating and cooling systems in a hypothetical processing environment are examined. An F-Chart analysis is used to simulate the performance of large-area arrays of the solar collector and to determine its potential contribution to heating and cooling loads.
The study shows that for a storage-based system, the contribution of solar energy is determined mainly by the collector area to storage volume ratio. It is suggested that this low cost collector could make a significant contribution to energy use in processing plants and may be an attractive future technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the thermodynamic advantages of using solar energy to replace the bled off steam in the regeneration system of Rankine cycle coal fired power stations has been proven theoretically, the practical techno/economic feasibility of the concept has yet to be confirmed relative to real power station applications. To investigate this concept further, computer modelling software “THERMSOLV” was specifically developed for this project at Deakin University, together with the support of the Victorian power industry and Australian Research Council (ARC). This newly developed software simulates the steam cycle to assess the techno/economic merit of the solar aided concept for various power station structures, locations and local electricity market conditions. Two case studies, one in Victoria Australia and one in Yunnan Province, China, have been carried out with the software. Chapter one of this thesis defines the aims and scope of this study. Chapter two details the literature search in the related areas for this study. The thermodynamic concept of solar aid power generation technology has been described in chapter three. In addition, thermodynamic analysis i.e. exergy/availability has been described in this chapter. The “Thermosolv” software developed in this study is detailed in chapter four with its structure, functions and operation manual included. In chapter five the outcomes of two case studies using the “Thermosolv” software are presented, with discussions and conclusions about the study in chapters 6 and 7 respectfully. The relevant recommendations are then made in chapter eight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar-aided power generation (SAPG) is capable of integrating solar thermal energy into a conventional thermal power plant, at multi-points and multi-levels, to replace parts of steam extractions in the regenerative Rankine cycle. The integration assists the power plant to reduce coal (gas) consumption and pollution emission or to increase power output. The overall efficiencies of the SAPG plants with different solar replacements of extraction steam have been studied in this paper. The results indicate that the solar thermal to electricity conversion efficiencies of the SAPG system are higher than those of a solar-alone power plant with the same temperature level of solar input. The efficiency with solar input at 330 °C can be as high as 45% theoretically in a SAPG plant. Even the low-temperature solar heat at about 85 °C can be used in the SAPG system to heat the lower temperature feedwater, and the solar to electricity efficiency is nearly 10%. However, the low-temperature heat resource is very hard to be used for power generation in other types of solar power plants. Therefore, the SAPG plant is one of the most efficient ways for solar thermal power generation.