35 resultados para Soils, Salts in.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical studies on the Fc + e− Fc+ (Fc = ferrocene) process have been undertaken via the oxidation of Fc and reduction of Fc+ as the hexafluorophosphate (PF6−) or tetrafluoroborate (BF4−) salts and their mixtures in three ionic liquids (ILs) (1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-butyl-3-methylimidazolium hexafluorophosphate). Data obtained at macro- and microdisk electrodes using conventional dc and Fourier-transformed large-amplitude ac (FT-ac) voltammetry reveal that diffusion coefficients for Fc and Fc+ differ significantly and are a function of the Fc and Fc+ concentration, in contrast to findings in molecular solvents with 0.1 M added supporting electrolyte media. Thus, the Faradaic currents associated with the oxidation of Fc (Fc0/+) and reduction of FcPF6 or FcBF4 (Fc+/0) when both Fc and Fc+ are simultaneously present in the ILs differ from values obtained when individual Fc and Fc+ solutions are used. The voltammetry for both the Fc0/+ and Fc+/0 processes exhibited near-Nernstian behavior at a glassy carbon macrodisk electrode and a platinum microdisk electrode, when each process was studied individually in the ILs. As expected, the reversible formal potentials (E°′) and diffusion coefficients (D) at 23 ± 1 °C were independent of the electrode material and concentration. However, when Fc and FcPF6 or FcBF4 were both present, alterations to the mass transport process occurred and apparent D values calculated for Fc and Fc+ were found to be about 25−39% and 32−42% larger, respectively, than those determined from individual solutions. The apparent value of the double layer capacitance determined by FT-ac voltammetry from individual and mixed Fc and Fc+ conditions at the GC electrode was also a function of concentration. Double layer capacitance values increased significantly with the concentration of Fc and FcPF6 or FcBF4 when species were studied individually or simultaneously, but had a larger magnitude under conditions where both species were present. Variation in the structure of the ILs and hence mobilities of the ionic species, when Fc and FcPF6 or FcBF4 are simultaneously present, is considered to be the origin of the nonadditivity of the Faradaic currents and variation in capacitance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study determined the environmental availability of copper (Cu) in Australian vineyard soils contaminated with fungicide derived Cu residues, and investigated the soil characteristics correlated with differences in Cu availability between regions. Concentrations of 0.01 M calcium chloride extractable Cu, measured in surface soils collected from 98 vineyards in 10 different grape-growing regions of Australia, ranged from <0.1 to 0.94 mg/kg and accounted for 0.10&minus;1.03% of the total Cu concentrations in the soils. Differences in the calcium chloride extractable Cu concentrations were related to the total Cu concentration and soil properties, including pH, clay, exchangeable K, silt, and calcium carbonate. The information generated from this study may prove useful in devising strategies to reduce the availability and toxicity of Cu in agricultural soils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bis(trifluoromethanesulfonyl)imide ion has recently been used in its lithium salt as a useful ion in solid polymer electrolytes because of the reduced degree of ion interaction its diffuse charge generates. In this work we have synthesised a number of novel salts based on the ammonium and pyrrolidinium cations of this anion. The salts all show reduced melting points compared with analogous halide salts. In some cases they are molten at room temperature. This latter group of salts have been characterized with respect to their properties as ionic liquids; the highest room temperature conductivity 2 mS cm&minus;1 being exhibited by methyl butyl pyrrolidinium imide. Many of the salts are glass forming, exhibiting glass transition temperatures in the region of &minus;90°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effect of calcium and magnesium ions was studied in detail in batch mode in shake flask cultures of two fast growing strains of thraustochytrids (Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1) for biomass and lipid production. These strains were previously isolated from Indian marine biodiversity. Screening of these two strains on different carbon and nitrogen sources revealed the suitability of glycerol over glucose and sodium nitrate over yeast extract for the cultivation of these strains. The presence of higher concentration of glycerol in the medium inhibited the glycerol utilization by the cell thus resulting in lower biomass and lipid production in both the strains. Supplementing media with calcium and magnesium ions promoted glycerol utilization thus resulted in a substantial rise in volumetric production of biomass (55.12 g L-1, 48.12 g L-1), fatty acid for biodiesel (27.14 g L-1, 22.15 g L-1) and docosahexaenoic acid (14.57 g L-1, 10.12 g L-1) with both strains Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1, respectively. Growth profile study of these two strains showed further improvement in production of biomass, fatty acid for biodiesel and docosahexaenoic acid when cultures were extended up to 7 days. Finding of this work underlines the importance of calcium and magnesium salts in designing new fermentation strategies to prevent substrate inhibition and achieve high cell density culture under high nutrient concentration especially carbon sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)–amino acid–hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10&minus;5 M) and the detection limits ranged between 4×10&minus;9 and 7×10&minus;6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MasterFoods wetlands exhibit phytoplankton communities, yet no zooplankton to consume them. Macrophytes were planted to improve the water quality. However a lack of oxygen, methane production and highly soluble salts in the wetland water potentially disrupted osmoregulation mechanisms in both colonising zooplankton and submerged macrophytes, thereby inhibiting their survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three useful developments in the preparation of guanidines are presented herein. A collection of bis(Boc)aminoalkylguanidines (n=2, 3, 4 and 6; Boc=tert-butoxycarbonyl), known to be prone to cyclisation, have been synthesised and isolated without chromatography as shelf-stable sulfonate salts in good yield (up to 94%). Secondly, a selection of guanidines tethered to a range of other functional groups, including alkyne, alkene, alcohol, and azide, have been prepared in good yields with no requirement for a purification step, and thirdly an inexpensive, high-yielding (93%), and facile synthesis of N,N'-bis(Boc)guanidine, a key precursor for N,N'-bis(Boc)-N'-triflylguanidine, is described in which the need for chromatographic purification is again obviated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO&minus;3, Cl&minus;, PO3&minus;4) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed (one-way ANOVA, p < 0.001 indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of space and time is increasing. The breakthrough curve (BTC) can characterize the temporal aspect of solute leaching, and recently the spatial solute distribution curve (SSDC) was introduced to describe the spatial solute distribution. We combined and extended both concepts to develop a tool for the comprehensive analysis of the full spatio-temporal behavior of solute leaching. The sampling locations are ranked in order of descending amount of total leaching (defined as the cumulative leaching from an individual compartment at the end of the experiment), thus collapsing both spatial axes of the sampling plane into one. The leaching process can then be described by a curved surface that is a function of the single spatial coordinate and time. This leaching surface is scaled to integrate to unity, and termed S can efficiently represent data from multisampler solute transport experiments or simulation results from multidimensional solute transport models. The mathematical relationships between the scaled leaching surface S, the BTC, and the SSDC are established. Any desired characteristic of the leaching process can be derived from S. The analysis was applied to a chloride leaching experiment on a lysimeter with 300 drainage compartments of 25 cm2 each. The sandy soil monolith in the lysimeter exhibited fingered flow in the water-repellent top layer. The observed S demonstrated the absence of a sharp separation between fingers and dry areas, owing to diverging flow in the wettable soil below the fingers. Times-to-peak, maximum solute fluxes, and total leaching varied more in high-leaching than in low-leaching compartments. This suggests a stochastic–convective transport process in the high-flow streamtubes, while convection–dispersion is predominant in the low-flow areas. S can be viewed as a bivariate probability density function. Its marginal distributions are the BTC of all sampling locations combined, and the SSDC of cumulative solute leaching at the end of the experiment. The observed S cannot be represented by assuming complete independence between its marginal distributions, indicating that S contains information about the leaching process that cannot be derived from the combination of the BTC and the SSDC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents an environmental-friendly and cost effective method for the extraction of arsenic from contaminated soils.
Laboratory experiments using inorganic salts, potassium phosphate (KH2PO4), potassium chloride (KCl), potassium nitrate (KNO3), potassium sulfate (K2SO4), and sodium perchlorate (NaClO4) were evaluated as arsenic extractants. An Andosol soil was artificially contaminated with arsenite [As(III)] and arsenate [As(V)]. The soil was washed in a batch process with different salt solutions in the pH range 3–11 for 24 hours at 20◦C. Among the various potassium and sodium salts tested, KH2PO4 was found to be highly effective in extracting arsenic from As(III)-soil attaining more than 80% and 40% from As(V)-soil in neutral pH range. Other salts were particularly ineffective in extraction of arsenic from both soils. More arsenic was extracted more from the As(III)-soil than the As(V)-soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a neural network model using genetic algorithm for a model for the prediction of the damage condition of existing light structures founded in expansive soils in Victoria, Australia. It also accounts for both individual effects and interactive effects of the damage factors influencing the deterioration of light structures. A Neural Network Model was chosen because it can deal with 'noisy' data while a Genetic Algorithm was chosen because it does not get `trapped' in local optimum like other gradient descent methods. The results obtained were promising and indicate that a Neural Network Model trained using a Genetic Algorithm has the ability to develop an interactive relationship and a Predicted Damage Conditions Model.