36 resultados para Soil-water interface

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water repellent soils are difficult to irrigate and susceptible to preferential flow, which enhances the potential for accelerated leaching to groundwater of hazardous substances. Over 5 Mha of Australian soil is water repellent, while treated municipal sewage is increasingly used for irrigation. Only if a critical water content is exceeded will repellent soils become wettable. To avoid excessive loss of water from the root zone via preferential flow paths, irrigation schemes should therefore aim to keep the soil wet enough to maintain soil wettability. Our objective was to monitor the near-surface water content and water repellency in a blue gum (Eucalyptus globulus) plantation irrigated with treated sewage. The plantation's sandy soil surface was strongly water repellent when dry. For 4 months, three rows of 15 blue gum trees each received no irrigation, three other rows received 50% of the estimated potential water use minus rainfall, and three more rows received 100%. During this period, 162 soil samples were obtained in three sampling rounds, and their water content (% dry mass) and degree of water repellency determined. Both high and low irrigation effectively wetted up the soil and eliminated water repellency after 2 (high) or 4 (low) months. A single-peaked distribution of water contents was observed in the soil samples, but the water repellency distribution was dichotomous, with 44% extremely water-repellent and 36% wettable. This is consistent with a threshold water content at which a soil sample changes from water repellent to wettable, with spatial variability of this threshold creating a much wider transition zone at the field scale. We characterized this transition zone by expressing the fraction of wettable samples as a function of water content, and demonstrated a way to estimate from this the wettable portion of a field from a number of water content measurements. To keep the plantation soil wettable, the water content must be maintained at a level at which a significant downward flux is likely, with the associated enhanced leaching. At water contents with negligible downward flux, the field is water repellent, and leaching through preferential flow paths is likely. Careful management is needed to resolve these conflicting requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA–didodecyldimethylammonium (DNA–DDDA) electrostatic complex was prepared and characterized through Fourier transformation infrared (FT-IR), 1H NMR and circular dichroism (CD) spectroscopy. When the dye molecule aqueous solutions were used as the subphase, the interaction between three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) and the complex at air/solution interface were investigated through the surface pressure–area (π–A) isotherms, Brewster angle microscopy and UV-Vis spectroscopy, respectively. Our investigation indicates that the interaction capabilities of the three dyes to DNA–DDDA complex are different and present an order of TMPyP>AO>EB. For the interaction forms, we believe that TMPyP intercalates into the double helix of DNA, and AO adsorbs onto the surface of the DNA. As for EB, the measured signal is too weak to give a definite interaction form in the present experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of DNA on the Langmuir film of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA·Br), and the change of the aggregation morphology of the composite monolayer with respect to surface pressure have been investigated by Brewster angle microscopy (BAM). In contrast with the case of DODA·Br on pure water subphase, when DNA was dispersed into subphase, its adsorption to the interface monolayer through electrostatic interaction decreases the charge density and therefore promotes the formation of domain at low surface pressure. In addition, the electrostatic interaction changed the phase morphology of DODA·Br Langmuir monolayer under different surface pressure, that is, from flower-shaped crystalline domain on the pure water subphase to circular domain on the subphase dispersed with DNA. The result also shows that the monolayer of the composite at air/water interface under the high pressure is not homogeneous, but consists of incompletely fused domains. For the Langmuir film of the surfactant with shorter alkyl-chains, similar morphology can be observed both under the high and low surface pressure. But the tight-stacked circular domain is no longer observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility of poly(d,l-lactide-co-glycolide) (PLG) with three amphiphilic molecules and the interaction of the PLG/surfactant mixtures with DNA at air/water interface are investigated by π-A isotherms, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) techniques. The π-A isotherms of the PLG mixtures with cationic C12AzoC6PyBr, and C12AzoC6N(CH3)3Br, are quite different from the π-A isotherm of pure PLG on water subphase. In contrast to the case, the π-A isotherm of PLG mixed with nonionic C12AzoC6OPy is almost identical to the pure PLG except some increasing of molecular area. Similar phenomena are observed on DNA subphase. The in situ BAM and ex situ AFM observations demonstrate that the dispersion of PLG at air/water interface becomes good when it mixes with the two cationic surfactants, whereas quite poor due to the phase separation when it mixes with the nonionic amphiphilic molecule. Based on these results we conclude that the cationic surfactants can affect the conformation change of PLG at air/water interface and figure a well miscibility with polymer whereas the nonionic amphiphilic molecule presents poor miscibility. In addition, the even mixing of the PLG and the cationic surfactants is favorable for the adsorption to DNA more effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive and simple analytical method was developed for analyzing the binary mixed pesticides of prometryne and acetochlor in soil–water system by gas chromatography/mass spectrometry (GC/MS). The sample solution was first purified by C18 solid-phase extraction column, which was leached by acetone. The leachate was enriched to 1.0 mL by pressure blowing concentrator and then analyzed by GC/MS. The linear calibration curves were showed in the range of 1–15 μg/mL with a correlation coefficient of 0.9991. The average recoveries (n = 5) were between 95.3 and 115.7%, with relative standard deviations ranged from 1.71 and 7.95%. The limits of detection of Prometryne/Acetochlor were up to 0.06 and 0.17 μg/mL, respectively. This method provides a reliable approach to examine and evaluate the residues of prometryne and acetochlor in the soil–water system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reported adsorption mechanism of mixed pesticides Prometryne-Acetochlor (PA) in soil. Thermodynamics and adsorption isotherms were used to preliminarily evaluate adsorption force, and IR and XRD were used to characterize adsorption characteristics between Prometryne/Acetochlor (PA) and soil, The result shows that adsorption isotherms is F-type, adsorptive heat are 9.57 kJ/mol and -93.83 kJ/mol of prometryne and acetochlor respectively. Hydrogen bonds also had been confirmed by IR and XRD analysis. The results can provide a theoretical support to the use of mixed pesticides agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inclusion of a water-soluble polymer, poly(vinyl pyrrolidone) (PVP), into a surface active film composition before application to the water surface leads to the formation of a dynamic duolayer; a novel surface film system. This duolayer shows improved surface viscosity over the monolayer compound alone, while the addition of polymer maintains other film properties such as evaporation control and equilibrium spreading pressure. Brewster Angle Microscopy shows that the duolayer film undergoes a different formation mechanism upon film compression, and the resultant surface pressure/area isotherm is different at lower surface pressures indicating the PVP is present on the water surface at these pressures and squeezed out to the water subphase at higher pressures. The addition of water-soluble polymers to form a dynamic duolayer provides a unique way to produce defect-free and tightly packed films while polymer is associated with the film. This finding provides new knowledge for the design of surface films with improved properties with potential applications in many areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding, and improving, the behavior of thin surface films under exposure to externally applied forces is important for applications such as mimicking biological membranes, water evaporation mitigation, and recovery of oil spills. This paper demonstrates that the incorporation of a water-soluble polymer into the surface film composition, i.e., formation of a three-duolayer system, shows improved performance under an applied dynamic stress, with an evaporation saving of 84% observed after 16 h, compared to 74% for the insoluble three-monolayer alone. Canal viscometry and spreading rate experiments, performed using the same conditions, demonstrated an increased surface viscosity and faster spreading rate for the three-duolayer system, likely contributing to the observed improvement in dynamic performance. Brewster angle microscopy and dye-tagged polymers were used to visualize the system and demonstrated that the duolayer and monolayer system both form a homogeneous film of uniform, single-molecule thickness, with the excess material compacting into small floating reservoirs on the surface. It was also observed that both components have to be applied to the water surface together in order to achieve improved performance under dynamic conditions. These findings have important implications for the use of surface films in various applications where resistance to external disturbance is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic interactions to stabilize Langmuir films at the air/water interface have been used to develop improved duolayer films. Two-component mixtures of octadecanoic (stearic) acid and poly(diallyldimethylammonium chloride) (polyDADMAC) with different ratios were prepared and applied to the water surface. Surface pressure isotherm cycles demonstrated a significant improvement in film stability with the inclusion of the polymer. Viscoelastic properties were measured using canal viscometry and oscillating barriers, with both methods showing that the optimum ratio for improved properties was four octadecanoic acid molecules to one DADMAC unit (1:0.25). At this ratio it is expected multiple strong ionic interactions are formed along each polymer chain. Brewster angle microscopy showed decreased domain size with increased ratios of polyDADMAC, indicating that the polymer is interspersed across the surface. This new method to stabilize and increase the viscoelastic properties of charged monolayer films, using a premixed composition, will have application in areas such as water evaporation mitigation, optical devices, and foaming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.