6 resultados para Soil temperature

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wildfires can induce or enhance soil water repellency under a range of vegetation communities. According to mainly USA-based laboratory studies, repellency is eliminated at a maximum soil temperature (T) of 280–400°C. Knowledge of T reached during a wildfire is important in evaluating post-fire soil physical properties, fertility and seedbed status. T is, however, notoriously difficult to ascertain retrospectively and often based on indicative observations with a large potential error. Soils under fire-prone Australian eucalypt forests tend to be water repellent when dry or moderately moist even if long unburnt. This study aims to quantify the temperature of water repellency destruction for Australian topsoil material sampled under three sites with contrasting eucalypt cover (Eucalyptus sieberi, E. ovata and E. baxteri). Soil water repellency was present prior to heating in all samples, increased during heating, but was abruptly eliminated at a specific T between 260 and 340°C. Elimination temperature varied somewhat between samples, but was found to be dependent on heating duration, with longest duration resulting in lowest elimination temperature. Results suggest that post-fire water repellency may be used as an aid in hindcasting soil temperature reached during the passage of a fire within repellency-prone environments.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both the physiological and biochemical control of budburst in the grapevine, Vitis Vinifera L. were investigated. It was found that the accuracy of a predictive model for grapevine budburst based on ambient temperature was limited under the experimental conditions. There was a significant correlation of 4.7 ± 0.3 days between the days of maximal xylem exudation and budburst over the 3 years of investigation. The co-relationships between daily xylem exudate volume and a range of environmental parameters were considered. It was found that soil temperature was highly correlated against daily xylem exudation. Ambient temperature and soil moisture were significantly correlated with xylem exudation, however the coefficients of correlation were much lower than that of soil temperature. Rainfall showed only a very limited correlation with daily xylem exudate flow. Seasonal variations in the pH and the carbohydrate and inorganic nutrient concentrations of xylem exudate were investigated. Exudate carbohydrate concentrations fell from 660 µM before the day of maximal xylem exudation to zero levels within 4 weeks. Xylem exudate pH was found to consistently fall to a minimum at the time of maximal exudate flow. Exudate concentrations of the metallic cofactors Ca, K, Mg, Mn and Zn varied directly with daily exudate flow, suggesting some sort of flow-dependent mobilisation of these nutrients. A growth promontory oligosaccharide fraction was prepared by partial acid hydrolysis of grapevine primary cell wall material. This fraction significantly increased control growth of the Lemna minor L. bioassay over a limited ‘window’ of bioactivity. A growth inhibitory oligosaccharide fraction, similar in activity to abscisic acid was isolated from grapevine xylem exudate prior to budburst. The exudate concentration or efficacy of this substance declined after budburst such that there was no apparent growth inhibition. A model is proposed for grapevine budburst whereby an oligosaccharide growth inhibitor is gradually removed from the xylematic stream under the effects of soil temperature, allowing the surge of metabolic activity and vegetative growth that constitute budburst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy consumption in heating and cooling around the world has been a major contributor to global warming. Hence, many studies have been aimed at finding new techniques to save and control energy through energy efficient measures. Most of this energy is used in residential, agricultural and commercial buildings. It is therefore important to adopt energy efficiency measures in these buildings through new technologies and novel building designs. These new building designs can be developed by employing various passive cooling systems. Earth pipe cooling is one of these which can assist to save energy without using any customary mechanical units. This paper investigates the earth pipe cooling performance in a hot humid subtropical climate of Rockhampton, Australia. A thermal model is developed using ANSYS Fluent for measuring its performance. Impacts of air velocity, air temperature, relative humidity and soil temperature on room cooling performance are also assessed. A temperature reduction of around 2 °C was found for the system. This temperature reduction contributed to an energy saving of a maximum of 866.54 kW (8.82%) per year for a 27.23 m3 room.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy efficiency of a building has become a major requirement since the building sector produces 40%-50% of the global greenhouse gas emissions. This can be achieved by improving building’s performance through energy savings, by adopting energy efficient technologies and reducing CO2 emissions. There exist several technologies with less or no environmental impact that can be used to reduce energy consumption of the buildings. Earth pipe cooling system is one of them, which works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the building. It is an approach for cooling a room in a passive process without using any habitual mechanical unit. The paper investigates the thermal performance of a horizontal earth pipe cooling system in a hot and humid subtropical climatic zone in Queensland, Australia. An integrated numerical model for the horizontal earth pipe cooling system and the room (or building) was developed using ANSYS Fluent to measure the thermal performance of the system. The impact of air temperature, soil temperature, air velocity and relative humidity on room cooling performance has also been assessed. As the soil temperature was below the outdoor minimum temperature during the peak warming hours of the day, it worked as an effective heat sink to cool the room. Both experimental and numerical results showed a temperature reduction of 1.11oC in the room utilizing horizontal earth pipe cooling system which will assist to save the energy cost in the buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic mulch films are widely used in agriculture to enhance crop production by suppressing weeds, conserving soil water and increasing soil temperature. The majority of plastic mulch films are however not biodegradable and are typically removed after each growing season. Recovery of these plastics from the soil is difficult and can affect successive crop yields while causing substantive cost to the environment and farmers. Due to increasingly stringent regulations regarding use of non-degradable plastic in agriculture they are likely to be phased out in the near future. In the past 10 years several classes of 'biodegradable' materials have been studied but most of these films are reported to be relatively weak in mechanical properties, not efficiently degradable and cost prohibitive.More recently, researchers have turned their attention to sprayable biodegradable polymer coatings for use on soils due to their easy application and versatility. The ability to mix natural additives, plasticizers and fillers to control and improve the mechanical and biodegradation properties of the core polymeric mulch film has been the driving force behind the development of these next generation sprayable polymeric mulch films.There have been many excellent review articles and papers written about polymeric mulch film, but the developing sprayable polymer systems have not been reviewed to the same extent. This paper focusses on the research progress in the area of biodegradable and sprayable polymer mulch film with emphasis on polymer formulations, properties and application. It also discusses current research to highlight the importance, potential benefits and future challenges in developing a cost effective biodegradable sprayable film for use in production agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.