7 resultados para Soil structure.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO−3, Cl−, PO3−4) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed (one-way ANOVA, p < 0.001 indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wastewater reuse is being widely promulgated to help address the global freshwater resource crisis. It can assist in reducing extraction of freshwater from the environment, and reuse of wastewater lessens the need for environmental discharge, which is clearly beneficial to receiving waters. But the practice itself also has the potential to be detrimental to natural and human environments: soil structure can become degraded, aquifers may be polluted, and human health may be threatened. The challenge facing natural resource managers is to identify the potential benefits and risks, and to achieve an appropriate balance. This paper describes environmental benefits and threats concomitant with the reuse of wastewater. We frequently draw upon examples from China and Australia-two countries that face particularly daunting water resource
challenges-but the principles can be.extended far beyond these geographical bounds and are applicable to
many parts of the world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainability refers to having the ability to meet present needs without impacting on future generations to meet their needs. It incorporates social, economic and environmental aspects, and as a measure of sustainability, a range of sustainability indicators at the economy, regional, and individual level, have been suggested. However, given the complex and multidisciplinary nature of the concept, an interdisciplinary approach is necessary. Sustainability is not something that is easily measurable, and the aim of this paper is to present a conceptual framework for quantifying sustainability on the basis of social economic efficiency. According to neoclassical economic theory, economic activity will only be sustained by the private sector as long as it is profitable. However, private economic decisions do not always ensure long-term sustainability of environmental resources or production. The approach suggested here is to derive a measure of social economic efficiency as a measure of sustainability. For dairy farmers, increased productivity has been emphasized, while recognizing the need to reduce greenhouse emissions, pests and disease, nutrient run-off into the environment and degradation of the soil structure. By incorporating environmental and economic impacts, a fuller measure of efficiency, social economic efficiency, and sustainability of the farming practice can be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rubber tree is a very important crop in Thailand, representing an essential source of income for farmers. In the past two decades, rubber tree plantations have been greatly expanding in unfavorable areas, where climate conditions are difficult and soil fertility is very poor. To optimize latex yields, mineral fertilizers have been widely used. A better understanding of the roles of the biological compartment in soil fertility is essential to determine alternative management practices to sustain soil fertility and optimize latex yields. Arbuscular mycorrhizal fungi (AMF) are widely recognized as beneficial for plants, mainly through their role in improving plant nutrient uptake. The objective of this study was to assess the AMF populations in rubber tree plantations and the impact of both soil characteristics and plantation age on these communities. Our results showed that all rubber trees were highly colonized, regardless of the soil structure and nutrient contents. AMF colonization was not affected by the age of the trees, suggesting that maintaining the symbiosis is likely to be beneficial at all stages. A better understanding and management of the microbial communities would contribute to maintaining or restoring soil fertility, leading to a better tree growth and optimized latex yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7–9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive–unfit, inactive–fit, active–unfit, active–fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3–7.7 % greater cortical area and thickness compared to inactive–unfit boys (P < 0.05), which was largely due to a 6.4–7.8 % (P < 0.05) greater cortical mass in the posterior–lateral, medial and posterior–medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive–fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior–medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.