4 resultados para Soil mapping

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to facilitate the better management of river basin resources, the Glenelg-Hopkins region in south-east Australia required an accurate and up to date land use map. Land use has a major impact on Australia's natural resources including its soil, water, flora and fauna and plays a major role in determining basin health. Inappropriate land use and practices have contributed to extensive dryland salinity and water quality problems. Land use data is often required for environmental models and in most cases the reliability of model outputs is dependent on the spatial detail and accuracy of the land use mapping. This paper examines methods to obtain an up to date land use map and a detailed accuracy assessment using Landsat ETM+ data for a regional basin. A multi-source based approach allowed the collection of 4817 ground truth data points from the field investigation. This enabled researchers to (i) incorporate a full range of information into digital image analysis with significant improvements in accuracy and (ii) hold sufficient independent references for an accurate error assessment. Classification accuracy was significantly improved using a stratification design, in which the region is sub-divided into smaller homogenous areas as opposed to a full scene classification technique. The overall classification accuracy was 84% (KHAT= 0.833) for the stratified approach compared to 76% (KHAT= 0.743) for the full scene classification. Effective assessment, planning and management of basins are dependent on a sound knowledge of the distribution and variability of land use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of footings in residential construction is influenced by the degree of ground movement, particularly in reactive soils, which is driven by the magnitude of change in soil moisture. New patterns of climate are affecting residential foundations and causing serious and expensive damage. This paper produces a map of potential risk for housing damage from ground movement due to climate change. Using a geographic information system, it combines information on (1) soil moisture change related to climate, using TMI as the indicator, and (2) population growth. Preliminary results, having Victoria, Australia, in the last decade as the case study, suggest that effects of climate change on soil, and resulting impacts on house foundations, are not being taken into consideration in current planning strategies for urban development. Most of the urban growth priority zones in the study area are susceptible to medium and high risk for damage. Producing new and renovated buildings that are durable in the long term is essential for the economy, environment and social welfare. The map presented here can assist policies and strategies towards urban resilience in the context of climate change.