11 resultados para Soil degradation

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movement toward a sustainable future has begun in many parts of the world, as the seriousness of the environmental problems faced by the planet become more widely recognised. Waste reduction, improved efficiency of energy use, water saving devices and changes in modes of transport are the first steps in the transition to a sustainable future. The students of today will be the decision makers of tomorrow and, thus, can have a significant effect on future development and the environmental
impacts of that development. If students today are to become active participants in the environmental decision-making process, education for sustainability becomes a key component in ensuring sustainable futures. There is a need to establish data describing students’ attitudes toward environmental and resource sustainability issues so that challenges to implementing sustainable development policy can be better recognised. The aims of this study were to identify the perceptions of students in
the south west region of Victoria regarding environment and resource sustainability, and to identify their level of participation in sustainable behaviours. A survey of students has found that global environmental issues perceived by students as being in urgent need of attention were access to freshwater, loss of tropical rainforest and exhaustion of natural resources. At the local level the most urgent issues identified were water pollution, salinization and soil degradation, and clearing of native vegetation. Students perceive that Australians are overusing natural resources. They indicated particular concern for the sustainability of fossil fuels, water, coastal environments and fisheries resources. The results of this study indicate that students are responding to concerns for the environment and resource sustainability by embracing some forms of sustainable behaviour. However, as educators we need to ensure that
the link is made between environment and resource sustainability and the implementation of policies that will further encourage sustainable behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 × 1010 g–1 was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in "natural" (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H2O2, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H2O2, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field-scale remediation of oil-contaminated soils from the Liaohe Oil Fields in China was examined using composting biopiles in windrow technology. Micronutrient-enriched chicken excrement and rice husk were applied as nutrition and a bulking agent. The lipase activities of indigenous micro-organisms were analyzed, and three indigenous fungi with high lipase activities was identified. An inoculum consisting of the three indigenous fungi and one introduced (exotic) fungus was applied to four different types of oil-contaminated soils. The results showed that the inoculum of indigenous fungi increased both the total colony-forming units (TCFU) and increased the rate of degradation of total petroleum hydrocarbons (TPH) in all contaminated soils but at different rates. In sharp contrast to other studies, the introduction of exotic micro-organisms did not improve the remediation, and suggests that inoculation of oil-contaminated sites with nonindigenous species is likely to fail. On the other hand, indigenous genera of microbes were found to be very effective in increasing the rate of degradation of TPH. The degradation of TPH was mainly controlled by the compositions of aromatic hydrocarbons and asphaltene and resin. Between 38 to 57% degradation of crude oils (with densities ranging from 25,800 to 77,200 mg/kg dry weight) in contaminated soils was achieved after 53 days of operation. The degradation patterns followed typical first-order reactions. We demonstrate that the construction and operation of field-scale composting biopiles in windrows with passive aeration is a cost-effective bioremediation technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10—200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is the single most important environmental degradation problem in the developing world. Despite the plethora of literature that exists on the incidence, causes and impacts of soil erosion, a concrete understanding of this complex problem is lacking. This paper examines the soil erosion problem in developing countries in order to understand the complex inter-relationships between population pressure, poverty and environmental-institutional dynamics. Two recent theoretical developments, namely Boserup's theory on population pressure, poverty and soil erosion and Lopez's theory on environmental and institutional dynamics have been reviewed. The analysis reveals that negative impacts of technical change, inappropriate government policies and poor institutions are largely responsible for the continued soil erosion in developing countries. On the other hand, potential for market-based approaches to mitigate the problem is also low due to the negative externalities involved. A deeper appreciation of institutional and environmental dynamics and policy reforms to strengthen weak institutions may help mitigate the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from a direct recharge experiment conducted in the field to investigate DOC and UVA(254) attenuation rates during the direct injection of UF treated wastewater into a artificial coastal sandfill are presented in this paper. Approximately 500 m(3) of ultra-filtered wastewater was injected into the saturated zone, over a period of 9 days. The movement of the plume was tracked over 80 days, during which time samples were obtained from multilevel samplers installed in transects across the drift axis of the plume. An analysis of fluorescein in the samples obtained during the drift of the UF plume showed that DOC and UVA were attenuated beyond rates predicted by conservative mixing, by up to a maximum of 45%. A degradation coefficient of 0.0175 day(-1) was found to be applicable for DOC degradation. After a drift period of 80 days, DOC and UVA reduced to approximately 4.5 mg/l and 0.100 cm(-1), respectively, from initial values of 8.06 mg/l and 0.199 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of polycyclic aromatic hydrocarbon and highly effective degradation fungi Mucor mucedo (MU) was studied on corncob decomposition in Pyr-contaminated soil for 120 days to identify the impact of a degradable immobilized carrier on the remediation of soil contaminated by persistent organic pollutants. Results showed that the corncob was mainly composed of hemicelluloses, cellulose, and water dissolved (WD) material, which accounted for 85 percent of its total weight. MU addition significantly affected corncob decomposition. Thus, humic acid production and WD and benzene-ethanol dissolved material degradation increased. The peaking of the WD content was delayed for 30 days or more. The extractable pyrene content positively correlated with the WD content in the corncob during the decomposition. These results theoretically support a refined remediation principle of immobilized microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bentonite is a natural clay mineral widely used in the mining and solid waste containment industry, for example, as a soil mixture for the construction of seepage barriers, or as a component of geosynthetic clay liners (GCLs), to provide low hydraulic conductivity. However, degradation of bentonites generally occurs when permeated with acid solutions, such as encountered in mining applications, which may influence physical properties, and particularly, the hydraulic performance of geosynthetic clay liners.In this paper, properties such as Atterberg limits, free swell index, and fluid loss of three bentonites were measured with different concentrations of sulphuric acid solutions. These properties were found to deteriorate even with low (0.015 M) sulphuric acid solutions; higher concentrations (up to 1 M) resulted in larger degradation. X-ray diffraction and infrared spectroscopy were used to monitor the change of bentonites after interaction with the acid solutions. Acid leachates in general result in the overall degradation of the hydraulic performance of geosynthetic clay liners and potentially, any bentonite-soil mixture.