14 resultados para Smart meter, Microcontrollore, Wireless, Risparmio energetico, Domotica

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utility companies provide electricity to a large number of consumers. These companies need to have an accurate forecast of the next day electricity demand. Any forecast errors will result in either reliability issues or increased costs for the company. Because of the widespread roll-out of smart meters, a large amount of high resolution consumption data is now accessible which was not available in the past. This new data can be used to improve the load forecast and as a result increase the reliability and decrease the expenses of electricity providers. In this paper, a number of methods for improving load forecast using smart meter data are discussed. In these methods, consumers are first divided into a number of clusters. Then a neural network is trained for each cluster and forecasts of these networks are added together in order to form the prediction for the aggregated load. In this paper, it is demonstrated that clustering increases the forecast accuracy significantly. Criteria used for grouping consumers play an important role in this process. In this work, three different feature selection methods for clustering consumers are explained and the effect of feature extraction methods on forecast error is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the operator of a power system, having an accurate forecast of the day-ahead load is imperative in order to guaranty the reliability of supply and also to minimize generation costs and pollution. Furthermore, in a restructured power system, other parties, like utility companies, large consumers and in some cases even ordinary consumers, can benefit from a higher quality demand forecast. In this paper, the application of smart meter data for producing more accurate load forecasts has been discussed. First an ordinary neural network model is used to generate a forecast for the total load of a number of consumers. The results of this step are used as a benchmark for comparison with the forecast results of a more sophisticated method. In this new method, using wavelet decomposition and a clustering technique called interactive k-means, the consumers are divided into a number of clusters. Then for each cluster an individual neural network is trained. Consequently, by adding the outputs of all of the neural networks, a forecast for the total load is generated. A comparison between the forecast using a single model and the forecast generated by the proposed method, proves that smart meter data can be used to significantly improve the quality of load forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine-to-Machine (M2M) paradigm enables machines (sensors, actuators, robots, and smart meter readers) to communicate with each other with little or no human intervention. M2M is a key enabling technology for the cyber-physical systems (CPSs). This paper explores CPS beyond M2M concept and looks at futuristic applications. Our vision is CPS with distributed actuation and in-network processing. We describe few particular use cases that motivate the development of the M2M communication primitives tailored to large-scale CPS. M2M communications in literature were considered in limited extent so far. The existing work is based on small-scale M2M models and centralized solutions. Different sources discuss different primitives. Few existing decentralized solutions do not scale well. There is a need to design M2M communication primitives that will scale to thousands and trillions of M2M devices, without sacrificing solution quality. The main paradigm shift is to design localized algorithms, where CPS nodes make decisions based on local knowledge. Localized coordination and communication in networked robotics, for matching events and robots, were studied to illustrate new directions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a Geometrically Based Single Bounce Elliptical Model (GBSBEM) for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. The system model assumes a cluster based wireless sensor network (WSN) which collects information from the sensors, filters and modulates the data and transmit it through a wireless channel to be collected at the receiver. We first develop a GBSBE model and based on this model we develop our channel model. Use of Smart antenna system at the receiver end, which exploits various receive diversity combining techniques like Maximal Ratio Combining (MRC), Equal Gain Combining (EGC), and Selection Combining (SC), adds novelty to this system. The performance of these techniques have been proved through matlab simulations and further ahead based on different number of antenna elements present at the receiver array, we calculate the performance of our system in terms of bit-error-rate (BER). Based on the transmission power we quantify for the energy efficiency of our communication model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless broadcasting is an efficient way to broadcast data to a large number of users. Some commercial applications of wireless broadcasting, such as satellite pay-TV, desire that only those users who have paid for the service can retrieve broadcast data. This is often achieved by broadcast encryption, which allows a station securely to broadcast data to a dynamically changing set of privileged users through open air. Most existing broadcast encryption schemes can only revoke a pre-specified number of users before system re-setup or require high computation, communication and storage overheads in receivers. In this paper, we propose a new broadcast encryption scheme based on smart cards. In our scheme, smart cards are used to prevent users from leaking secret keys. Additionally, once an illegally cloned smart card is captured, our scheme also allows tracing of the compromised smart card by which illegal smart cards are cloned, and can then revoke all cloned smart cards. The new features of our scheme include minimal computation needs of only a few modular multiplications in the smart card, and the capability to revoke up to any number of users in one revocation. Furthermore, our scheme is secure against both passive and active attacks and has better performance than other schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a framework for indoor location prediction system using multiple wireless signals available freely in public or office spaces. We first propose an abstract architectural design for the system, outlining its key components and their functionalities. Different from existing works, such as robot indoor localization which requires as precise localization as possible, our work focuses on a higher grain: location prediction. Such a problem has a great implication in context-aware systems such as indoor navigation or smart self-managed mobile devices (e.g., battery management). Central to these systems is an effective method to perform location prediction under different constraints such as dealing with multiple wireless sources, effects of human body heats or mobility of the users. To this end, the second part of this pa- per presents a comparative and comprehensive study on different choices for modeling signals strengths and prediction methods under different condition settings. The results show that with simple, but effective modeling method, almost perfect prediction accuracy can be achieved in the static environment, and up to 85% in the presence of human movements. Finally, adopting the proposed framework we outline a fully developed system, named Marauder, that support user interface interaction and real-time voice-enabled location prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer haptics has so far been performed on a personal computer (PC). Off the shelf haptic devices provide only PC interfaces and software drivers for control and communication. The new wave of high capable tablet PCs and high end smart phones introduced new platforms for haptic applications. The major problem was to communicate wirelessly to provide user convenience and support mobility which is an essential feature for these platforms. In this paper we provide a wireless layered communication protocol and a hardware setup that enables off the shelf haptic devices to communicate wirelessly with a mobile device. The layers in the protocol enable the change of any hardware components without affecting the data flow. However, the adoption of the wireless interface instead of the wired one comes with the price of speed. Haptic refresh loops require a relatively high refresh rate of 1000 Hz compared to graphics loop which require between 30 and 60 only. An interpolation algorithm was demonstrated to compensate the latency and secure a stable user experience. The introduced setup was tested against portable environments and the users could perform similar functionalities to what are available on a wired setup to a PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud services to smart things face latency and intermittent connectivity issues. Fog devices are positioned between cloud and smart devices. Their high speed Internet connection to the cloud, and physical proximity to users, enable real time applications and location based services, and mobility support. Cisco promoted fog computing concept in the areas of smart grid, connected vehicles and wireless sensor and actuator networks. This survey article expands this concept to the decentralized smart building control, recognizes cloudlets as special case of fog computing, and relates it to the software defined networks (SDN) scenarios. Our literature review identifies a handful number of articles. Cooperative data scheduling and adaptive traffic light problems in SDN based vehicular networks, and demand response management in macro station and micro-grid based smart grids are discussed. Security, privacy and trust issues, control information overhead and network control policies do not seem to be studied so far within the fog computing concept.