326 resultados para Skeletal-muscle Mass

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited data have suggested that the consumption of fluid milk after resistance training (RT) may promote skeletal muscle hypertrophy. The aim of this study was to assess whether a milk-based nutritional supplement could enhance the effects of RT on muscle mass, size, strength, and function in middle-aged and older men. This was an 18-mo factorial design (randomized control trial) in which 180 healthy men aged 50–79 yr were allocated to the following groups: 1) exercise + fortified milk, 2) exercise, 3) fortified milk, or 4) control. Exercise consisted of progressive RT with weight-bearing impact exercise. Men assigned to the fortified milk consumed 400 ml/day of low-fat milk, providing an additional 836 kJ, 1000 mg calcium, 800 IU vitamin D3, and 13.2 g protein per day. Total body lean mass (LM) and fat mass (FM) (dual-energy X-ray absorptiometry), midfemur muscle cross-sectional area (CSA) (quantitative computed tomography), muscle strength, and physical function were assessed. After 18 mo, there was no significant exercise by fortified milk interaction for total body LM, muscle CSA, or any functional measure. However, main effect analyses revealed that exercise significantly improved muscle strength (∼20–52%, P < 0.001), LM (0.6 kg, P < 0.05), FM (−1.1 kg, P < 0.001), muscle CSA (1.8%, P < 0.001), and gait speed (11%, P < 0.05) relative to no exercise. There were no effects of the fortified milk on muscle size, strength, or function. In conclusion, the daily consumption of low-fat fortified milk does not enhance the effects of RT on skeletal muscle size, strength, or function in healthy middle-aged and older men with adequate energy and nutrient intakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Bioelectrical impedance (BIA) represents a simple, inexpensive and non-invasive method that is often used to assess fat-mass (FM) and fat-free mass (FFM) in large population-based cohorts.

Objective

The aim of this study was to describe the reference ranges and examine the influence of age and gender on FM, FFM and skeletal muscle mass (SMM) as well as height-adjusted estimates of FM [fat mass index (FMI)], FFM [fat-free mass index (FFMI)] and SMM [SMM index (SMI)] in a national, population-based cohort of Australian adults.

Design and Participants

The analytical sample included a total of 8,582 adults aged 25–91 years of Europid origin with complete data involved in the cross-sectional 1999–2000 Australian, Diabetes, Obesity and Lifestyle (AusDiab) Study.

Measurements

Bioelectrical impedance analysis was used to examine components of body composition. Demographic information was derived from a household interview.

Results

For both genders, FFM, SMM and SMI decreased linearly from the age of 25 years, with the exception that in men SMI was not related to age and FFM peaked at age 38 years before declining thereafter. The relative loss from peak values to ≥75 years in FFM (6–8%) and SMM (11–15%) was similar between men and women. For FM and FMI, there was a curvilinear relationship with age in both genders, but peak values were detected 6–7 years later in women with a similar relative loss thereafter. For FFMI there was no change with age in men and a modest increase in women.

Conclusion

In Australian adults there is heterogeneity in the age of onset, pattern and magnitude of changes in the different measures of muscle and fat mass derived from BIA, but overall the agerelated losses were similar between men and women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body composition (fat mass [FM] and skeletal muscle mass [SMM]) predicts clinical outcomes. In particular, loss of SMM (sarcopenia) is associated with frailty and mortality. There are no data on the prevalence and impact of FM and SMM in patients undergoing transcatheter aortic valve implantation (TAVI). The objective of this study is to determine body composition from pre-TAVI computed tomography (CT) and evaluate its association with clinical outcomes in patients who underwent TAVI. A total of 460 patients (mean age 81 ± 8 years, men: 51%) were included. Pre-TAVI CTs of the aorto-ilio-femoral axis were analyzed for FM and SMM cross-sectional area at the level of the third lumbar vertebrae (L3). Regression equations correlating cross-sectional area at L3 to total body FM and SMM were used to determine prevalence of sarcopenia, obesity, and sarcopenic obesity in patients (64%, 65%, and 46%, respectively). Most TAVI procedures were performed through a transfemoral approach (59%) using a balloon-expandable valve (94%). The 30-day and mid-term (median 12 months [interquartile range 6 to 27]) mortality rates were 6.1% and 29.6%, respectively. FM had no association with clinical outcomes, but sarcopenia predicted cumulative mortality (hazard ratio 1.55, 95% confidence interval 1.02 to 2.36, p = 0.04). In conclusion, body composition analysis from pre-TAVI CT is feasible. Sarcopenia, obesity, and sarcopenic obesity are prevalent in the TAVI population, with sarcopenia predictive of cumulative mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the role of dietary proteins on the maintenance of skeletal muscle mass in men who may or may not be insulin-resistant. It identified that dairy foods are powerful stimulators of muscle growth however this response is reduced during insulin-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether skeletal muscle gene expression of calpain 3 is related to obesity and insulin resistance.

DESIGN: Cross-sectional studies in 27 non-diabetic human subjects and in Psammomys obesus, a polygenic animal model of obesity and type 2 diabetes.

MEASUREMENTS: Expression of CAPN3 in skeletal muscle was measured using Taqman fluorogenic PCR. In the human subjects, body composition was assessed by DEXA and insulin sensitivity was measured by euglycemic-hyperinsulinemic clamp. In Psammomys obesus, body composition was determined by carcass analysis, and substrate oxidation rates, physical activity and energy expenditure were measured by whole-body indirect calorimetry.

RESULTS: In human subjects, calpain 3 gene expression was negatively correlated with total (P=0.022) and central abdominal fat mass (P=0.034), and with blood glucose concentration in non-obese subjects (P=0.017). In Psammomys obesus, calpain 3 gene expression was negatively correlated with circulating glucose (P=0.013) and insulin (P=0.034), and with body fat mass (P=0.049). Indirect calorimetry revealed associations between calpain 3 gene expression and carbohydrate oxidation (P=0.009) and energy expenditure (P=0.013).

CONCLUSION/INTERPRETATION: Lower levels of expression of calpain 3 in skeletal muscle were associated with reduced carbohydrate oxidation and elevated circulating glucose and insulin concentrations, and also with increased body fat and in particular abdominal fat. Therefore, reduced expression of calpain 3 in both humans and Psammomys obesus was associated with phenotypes related to obesity and insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle, as a consequence of its mass and great capacity for altered metabolism, has a major impact on whole-body metabolic homeostasis and is capable of remarkable adaptation in response to various physiological stimuli, including exercise and dietary intervention. Exercise-induced increases in skeletal muscle mRNA levels of a number of genes have been reported, due to transcriptional activation and/or increased mRNA stability. The cellular adaptations to exercise training appear to be due to the cumulative effects of transient increases in gene transcription after repeated exercise bouts. The relative importance of transcriptional (mRNA synthesis) and translational (mRNA stability or translational efficiency) mechanisms for the training-induced increases in skeletal muscle protein abundance remains to be fully elucidated. Dietary manipulation, and the associated alterations in nutrient availability and hormone levels, can also modify skeletal muscle gene expression, although fewer studies have been reported. A major challenge is to understand how exercise and diet exert their effects on gene and protein expression in skeletal muscle. In relation to exercise, potential stimuli include stretch and muscle tension, the pattern of motor nerve activity and the resultant calcium transients, the energy charge of the cell and substrate availability, oxygen tension and circulating hormones. These are detected by various cellular signaling mechanisms, acting on a range of downstream targets and a wide range of putative transcription factors. A key goal in the years ahead is to identify how alterations at the level of gene expression are coupled to the changes in skeletal muscle phenotype. It is clear that gene expression, although representing a specific site of regulation, is only one step in a complex cascade from the initial stimulus to the final phenotypic adaptation and integrated physiological response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta -oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 ± 3.1 yr of age, range 20-42 yr, body mass index 22.6 kg/m2, range 17-26 kg/m2) underwent a 9-day exercise training program of 60 min cycling per day at 63% peak oxygen uptake (VO2 peak; 104 ± 14 W). On days 1 and 9 of the program, muscle biopsies were sampled from the vastus lateralis muscle at rest, at the completion of exercise, and again 3 h postexercise. Gene expression of key components of FA transport [FA translocase (FAT/CD36), plasma membrane-associated FA-binding protein], beta -oxidation [carntine palmitoyltransferase(CPT) I, beta -hydroxyacyl-CoA dehydrogenase] and transcriptional control [peroxisome proliferator-activated receptor (PPAR)alpha , PPARgamma , PPARgamma coactivator 1, sterol regulatory element-binding protein-1c] were unaltered by exercise when measured at the completion and at 3 h postexercise. Training increased total lipid oxidation by 24% (P < 0.05) for the 1-h cycling bout. This increased capacity for lipid oxidation was accompanied by an increased expression of FAT/CD36 and CPT I mRNA. Similarly, FAT/CD36 protein abundance was also upregulated by exercise training. We conclude that enhanced fat oxidation after exercise training is most closely associated with the genes involved in regulating FA uptake across the plasma membrane (FAT/CD36) and across the mitochondrial membrane (CPT I).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 ± 3% peak oxygen consumption (VO2 peak) (Lo) or 27 ± 2 min at 83 ± 2% VO2 peak (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 ± 35 mmol/kg dry mass; Hi: 420 ± 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 ± 18 mmol/kg dry mass) compared with Lo (262 ± 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 ± 24 mmol/kg) than in Lo (146 ± 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (~2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 ± 0.7 vs. 1.6 ± 0.3 arbitrary units) and 61% higher in Hi (2.9 ± 0.5 vs. 1.8 ± 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at ~40 and ~80% VO2 peak, with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.