19 resultados para Silk fabrics - Research

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photodegradation of protein fibres such as wool and silk has become a serious issue for both the fibre research community and the textile industry. This PhD project has used several novel techniques to tackle this challenging research topic. The results provide significant new insights into the mechanism of photodegradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides an overview of recent research on a range of natural fibres and textiles. The focus is on work carried out at Deakin University’s Centre for Material and Fibre Innovation, which is a multidisciplinary research centre with over 100 researchers. The fibres include hemp, wool, silk, and alpaca fibres. Research on yarns, fabrics, and fine powders made from wool and silk fibres are briefly discussed also.

The within-fibre diameter variation of wool has been examined systematically, which highlights the importance of this hard-to-measure fibre attribute. A relationship between hemp fibre fineness and residual gum content has been established, which provides a rapid means of assessing the residual gum content in the degummed hemp fibres. Silk and wool fibres have been converted into ultrafine powders for advanced applications. The Resistance to Compression (RtC) behaviour of wool and alpaca fibres has been closely examined, which challenges the belief that RtC is a good indicator of fibre softness. Ways of reducing the hairiness of natural fibre yarns, predicting the pilling propensity of wool knits, and functionalising fabrics for superhydrophobicity and photochromic or colour changing effects are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of maternity waiting homes (MWH) has a long history spanning over 100 years. The research reported here was conducted in the Thateng District of Sekong Province in southern Lao People’s Democratic Republic (PDR) to establish whether the MWH concept would be affordable, accessible, and most importantly acceptable, as a strategy to improve maternal outcomes in the remote communities of Thateng with a high proportion of the population from ethnic minority groups. The research suggested that there were major barriers to minority ethnic groups using existing maternal health services (reflected in very low usage of trained birth attendants and hospitals and clinics) in Thateng. Unless MWH are adapted to overcome these potential barriers, such initiatives will suffer the same fate as existing maternal facilities. Consequently, the Lao iteration of the concept, as operationalized in the Silk Homes project in southern Lao PDR is unique in combining maternal and infant health services with opportunities for micro credit and income generating activities and allowing non-harmful traditional practices to co-exist alongside modern medical protocols. These innovative approaches to the MWH concept address the major economic, social and cultural barriers to usage of safe birthing options in remote communities of southern Lao PDR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, fabrics with novel super water-repellent and unidirectional water-transfer functions have been prepared using one-step wet-chemical coating processes. The mechanism of directional water transport across the fabrics having gradient superhydrophobicity to hydrophilicity has been elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research developed a milling technology for ultrafine silk particles and designed novel biocompatible and biodegradable silk composites for repairing hard tissue defects. It also demonstrated high and rapid reversible ion binding properties of silk particles and thereby opened up their application opportunities as advanced green sorbents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report on superhydrophobic fabrics (polyester, wool and cotton) produced by a wet-chemical coating technique. The coating solutions were synthesized by the co-hydrolysis of two silane precursors, tetraethyl orthosilicate (TEOS) and an alkylsilane, in an alkaline condition. Without any purification, the as-hydrolyzed solutions were directly used to treat fabrics, and the treated fabrics had water contact angles (CA) as high as 170º and sliding angles (SA) as low as 5º. Three alkylsilanes have been used for the synthesis of the coating solutions, and all contain three hydrolysable alkoxyl groups and one non-hydrolysable alkyl, but with different chain lengths (C1, C8 and C16). It was found that the CA value increased with an increase in the alkyl chain length, while the SA showed a reverse trend. When the functional group had a C16 alkyl, the treated fabric surfaces were highly superhydrophobic, with the CA not being affected much by the fabric type, while the SA values were slightly affected by the original wettability of the fabric substrates. The superhydrophobic feature was attributed to a highly rough surface formed by the particulate coating. Aside from the superhydrophobicity, the influence of the coating on the fabric softness was also examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coloured conducting textiles have shown a wide range of potential applications in heating fabrics, electromagnetic wave absorption, and wearable optoelectronic devices. This research aimed at clarifying some issues occurred in the research project on coloured conductive textiles. The investigation firstly clarified a possible chemical reaction that took place between a commercial dispersing dye (Terasil Red G) and the conducting polymer polypyrrole, through chemical separation, structural identification and spectrum characterisations. Then, a series of acidic dyes were introduced into polypyrrole matrix during the vapour coating of conducting polymer on the wool fabrics. Colour and thermal stability studies were conducted. Finally, the polypyrrole nanoparticles (particle size several~200nm) were prepared by a microemulsion polymerisation technique. An acid dye was used as the dopant to re-dope the nanoparticles. The effect of the acidic dye on the optical absorption of nanoparticles was studied. Applying the conducting nanoparticles on wool fabrics may open an alternative path to achieve the coloured conducting textiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silk contains a fibre forming protein, fibroin, which is biocompatible, particularly after removing the potentially immunogenic non-fibroin proteins. Silk can be engineered into a wide range of materials with diverse morphologies. Moreover, it is possible to regenerate fibroin with a desired amount of crystallinity, so that the biodegradation of silk materials can be controlled. These advantages have sparked new interest in the use of silk fibroin for biomedical applications, including tissue engineering scaffolds and carriers for sustained release of biologically active molecules. This article summarizes the current research related to the formation of silk materials with different morphologies, their biocompatibility, and examples of their biomedical applications. Recent work on the preparation of silk particles by mechanical milling and their applications in silk composite scaffolds is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collection of images examining the microstructure of raw cocoons. The research investigates how the microstructure varies from one layer to another in the same cocoon and also from one cocoon variety to another. The research is being undertaken to study the structure and property relationships, specifically the antibacterial properties, photodegradability and mechanical strength of different cocoon components - fibre, sericin, and crystals. The aim is to understand the role of different cocoon components and their mechanism of protecting the pupa from extremes of climatic conditions, microorganisms, and other pathogens and predators. Scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to analyse the structure of the cocoons, fibre, and sericin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic tympanic membrane perforations can cause significant morbidity. The term myringoplasty describes the operation used to close such perforations. A variety of graft materials are available for use in myringoplasty, but all have limitations and few studies report post-operative hearing outcomes. Recently, the biomedical applications of silk fibroin protein have been studied. This material’s biocompatibility, biodegradability and ability to act as a scaffold to support cell growth prompted an investigation of its interaction with human tympanic membrane keratinocytes. Methods and materials: Silk fibroin membranes were prepared and human tympanic membrane keratinocytes cultured. Keratinocytes were seeded onto the membranes and immunostained for a number of relevant protein markers relating to cell proliferation, adhesion and specific epithelial differentiation. Results: The silk fibroin scaffolds successfully supported the growth and adhesion of keratinocytes, whilst also maintaining their cell lineage. Conclusion: The properties of silk fibroin make it an attractive option for further research, as a potential alternative graft in myringoplasty.