10 resultados para Shu jing

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extracts from the roots of Salvia miltiorrhiza Bunge (Danshen) are widely and traditionally used in the treatment of angina pectoris, acute myocardial infarct, hyperlipidemia and stroke in China and other Asian countries. In this study, we have investigated the role of P-glycoprotein (P-gp) in the intestinal absorption of tanshinone IIA (TSA), a major active constituent of Danshen, using several in vitro and in vivo models. The oral bioavailability of TSA was about 2.9

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Glabridin is a major active constituent of Glycyrrhiza glabra which is commonly used in the treatment of cardiovascular and central nervous system (CNS) diseases. Recently, we have found that glabridin is a substrate of P-glycoprotein (PgP/MDR1). This study aimed to investigate the role of PgP in glabridin penetration across the blood–brain barrier (BBB) using several in vitro and in vivo models.
Materials and Methods. Cultured primary rat brain microvascular endothelial cells (RBMVECs) were used in the uptake, efflux and transcellular transport studies. A rat bilateral in situ brain perfusion model was used to investigate the brain distribution of glabridin. The brain and tissue distribution of glabridin in rats with or without coadministered verapamil or quinidine were examined with correction for the tissue residual blood. In addition, the brain distribution of glabridin in mdr1a(-/-) mice was compared with the wild-type mice. Glabridin in various biological matrices was determined by a validated liquid chromatography mass spectrometric method.
Results. The uptake and efflux of glabridin in cultured RBMVECs were ATP-dependent and significantly altered in the presence of a PgP or multi-drug resistance protein (Mrp1/2) inhibitor (e.g. verapamil or MK-571). A polarized transport of glabridin was found in RBMVEC monolayers with
facilitated efflux from the abluminal (BL) to luminal (AP) side. Addition of a PgP or Mrp1/2 inhibitor in both luminal and abluminal sides attenuated the polarized transport across RBMVECs. In a bilateral in situ brain perfusion model, the uptake of glabridin into the cerebrum increased from 0.42 T 0.09% at 1 min to 9.27 T 1.69% (ml/100 g tissue) at 30 min and was significantly greater than that for sucrose. Coperfusion of a PgP or Mrp1/2 inhibitor significantly increased the brain distribution of glabridin by 33.6j142.9%. The rat brain levels of glabridin were only about 27% of plasma levels when corrected by tissue residual blood and it was increased to up to 44% when verapamil or quinidine was coadministered. The area under the brain concentration-time curve (AUC) of glabridin in mdr1a(-/-) mice was 6.0-fold higher than the wild-type mice.
Conclusions. These findings indicate that PgP limits the brain penetration of glabridin through the BBB and PgP may cause drug resistance to glabridin (licorice) therapy for CNS diseases and potential drugglabridin interactions. However, further studies are needed to explore the role of other drug transporters (e.g. Mrp1-4) in restricting the brain penetration of glabridin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tanshinone IIB (TSB) is a major active constituent of the root of Salvia miltiorrhiza (Danshen) used in the treatment of acute stroke. Danshen extracts and TSB have shown marked neuron-protective effects in mouse studies but there is a lack of clinical evidence for the neuron-protective effects of Danshen and its active ingredients. This study investigated the neuron-protective effects of TSB in experimentally stroked rats. TSB at 5 and 25 mg/kg by intraperitoneal injection significantly reduced the focal infarct volume, cerebral histological damage and apoptosis in rats subjected to middle cerebral artery occlusion (MCAO) compared to MCAO rats receiving vehicle. This study demonstrated that TSB was effective in reducing stroke-induced brain damage and may represent a novel drug candidate for further development. Further mechanistic studies are needed for the neuron-protective activity of TSB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irinotecan (CPT-11) is an important anticancer drug in management of advanced colon cancer. A marked protective effect on CPT-11-induced blood and gastrointestinal toxicity is obtained by combination of St. John's wort (SJW) in recent clinical and rat studies. However, the mechanism is unclear. This study aimed to explore the effects of SJW on the pharmacokinetics of CPT-11 and its major metabolites (SN-38 and SN-38 glucuronide) in rats and the underlying mechanisms using several in vitro models. Short-term (3 days) and long-term (14 days) pretreatment with SJW were conducted in rats to examine the effects of co-administered SJW on the plasma pharmacokinetics of CPT-11, SN-38 and SN- 38 glucuronide. Rat liver microsomes and a rat hepatoma cell line, H4-II-E cells, were utilized to study the effects of aqueous and ethanolic extracts (AE and EE) and major active components (hyperforin, hypericin and quercetin) of SJW on CPT-11 and SN-38 metabolism and intracellular accumulation. Co-administered SJW for consecutive 14 days significantly decreased the initial plasma concentration (C0) of CPT-11, the area under the concentration-time curve (AUC0-10hr) and maximum plasma concentration (Cmax) of SN-38. The ethanolic extracts (EE) of SJW at 5 μ g/ml significantly decreased SN-38 glucuronidation by 45% (P < 0.05) in rat hepatic microsomes. Pre-incubation of aqueous SJW extracts (AE) at 10 g/ml, SJW EE at 5 μg/ml, and quercetin at 10μ M significantly increased the glucuronidation of SN-38 in H4- II-E cells. A 2-hr pre-incubation of quercetin (100μ M) significantly increased the intracellular accumulation of CPT-11 (P < 0.05). However, pre-incubation of hypericin (20 nM and 200 nM) and hyperforin (1μ M) significantly decreased the intracellular accumulation of CPT-11. In addition, pre-incubation of hypericin, SJW EE and quercetin significantly increased the intracellular accumulation of SN-38. Aqueous and ethanolic SJW extracts and its major active components did not alter the plasma protein binding of CPT-11 and SN-38. These results indicated that the aqueous and ethanolic extracts of SJW and its major active components could markedly alter glucuronidation of SN-38 and intracellular accumulation of CPT-11 and SN-38, which probably provides partial explanation for the altered plasma pharmacokinetics of CPT-11 and SN-38 and the antagonizing effects on the toxicities of CPT-11. Further studies are needed to explore the role of both pharmacokinetic and pharmacodynamic components in the protective effect of SJW against the toxicities of CPT-11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for Pglycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 ± 0.1% at 1 min to 11.13 ± 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.