10 resultados para Shell Element

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roll forming is an incremental bending process for forming metal sheet, strip or coiled stock. Although Finite Element Analysis (FEA) is a standard tool for metal forming simulation, it is only now being increasingly used for the analysis of the roll forming process. This is because of the excessive computational time due to the long strip length and the multiple numbers of stands that have to be modelled. Typically a single solid element is used through the thickness of the sheet for roll forming simulations. Recent investigations have shown that residual stresses introduced during steel processing may affect the roll forming process and therefore need to be included in roll forming simulations. These residual stresses vary in intensity through the thickness and this cannot be accounted for by using only one solid element through the material thickness, in this work a solid-shell element with an arbitrary number of integration points has been used to simulate the roll forming process. The system modelled is that of roll forming a V-channel with dual phase DP780 sheet steel. In addition, the influence of other modelling parameters, such as friction, on CPU time is further investigated. The numerical results are compared to experimental data and a good correlation has been observed. Additionally the numerical results show that the CPU time is reduced in the model without friction and that considering friction does not have a significant effect on springback prediction in the numerical analysis of the roll forming process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A family of simple, displacement-based and shear-flexible triangular and quadrilateral flat plate/shell elements for linear and geometrically nonlinear analysis of thin to moderately thick laminate composite plates are introduced and summarized in this paper.

The developed elements are based on the first-order shear deformation theory (FSDT) and von-Karman’s large deflection theory, and total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from Timoshenko’s laminated composite beam functions, thus convergence can be ensured theoretically for very thin laminates and shear-locking problem is avoided naturally.

The flat triangular plate/shell element is of 3-node, 18-degree-of-freedom, and the plane displacement interpolation functions of the Allman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. The flat quadrilateral plate/shell element is of 4-node, 24-degree-of-freedom, and the linear displacement interpolation functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements.

The developed elements are simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the elements are convergent, not sensitive to mesh distortion, accurate and efficient for linear and geometric nonlinear analysis of thin to moderately thick laminates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bending and reverse bending are the dominant material deformations in roll forming, and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of a roll forming process. Recent investigations have shown that residual stresses change the material behavior close to the yield in a bending test. So, residual stresses introduced during prior steel processing operations may affect the roll forming process, and therefore they need to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is time consuming and has limited accuracy while analytical models that are available require detailed information about the pre-processing conditions that is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that determines a residual stress profile through the material thickness based on experimental pure bend test data. A numerical model of the skin passing (temper rolling) process is performed to introduce a residual stress profile in DP780 steel sheet. The skin passed strips are used in a pure bending simulation to record moment-curvature data and this data is then applied in an inverse analysis to predict the residual stress profile in the material. Comparison of the residual stress profile predicted by the inverse routine with that calculated by finite element analysis (FEA) indicates an inverse approach combined with pure bend test may present an alternative to predict residual stresses in sheet metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To have fuel efficient vehicles with a lightweight structure, the use of High Strength Steels (HSS) and Advanced High Strength Steels (AHSS) in the body of automobiles is increasing. Roll forming is used widely to form AHSS materials. Roll forming is a continuous process in which a flat strip is shaped to the desired profile by passing through numerous sets of rolls. Formability and springback are two major concerns in the roll forming of AHSS materials. Previous studies have shown that the elastic modulus (Young's modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to numerically investigate the effect of a change in elastic modulus during forming on springback in roll forming. Experimental loading-unloading tests have been performed to obtain the material properties of TRIP 700 steel and incorporate those in the material model used in the numerical simulation of the roll forming process. The finite element simulations were carried out using MSC-Marc and two different element types, a shell element and a solid-shell element, were investigated. The results show that the elastic modulus diminution due to plastic strain increases the springback angle by about 60% in the simple V-section roll forming analyzed in this study. © (2014) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming and sheet materials used in the process are often temper rolled (skin passed), roller- or tension-levelled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behaviour in bending. A thickness reduction rolling process available at Deakin that leads to material deformation similar to an industrial temper rolling operation was used in this study to introduce residual stresses into a dual phase, DP780, steel strip. The initial and thickness reduced strips were then used in a 5-stand experimental V-section roll forming set-up to identify the effect of residual stress on the final shape. The influence of residual stress and the effect of plastic deformation on the material behaviour in roll forming are separately determined in numerical simulation. The results show that the thickness reduction rolling process decreases the maximum bow height while the springback angle and end flare increase. Comparison with experimental results shows that using material data from the conventional tensile test in a numerical simulation does not allow for the accurate prediction of shape defects in a roll forming process if a residual stress profile exists in the material. On the other hand including the residual stress information leads to improved model accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous experimental studies have been carried out to investigate the collapse of tubular metallic crash structures under axial compression. Some simple theoretical models have been developed but these often assume one type of progressive collapse, which is not always representative of the real situation. Finite Element (FE) models, when further refined, have the potential to predict the actual collapse mode and how it influences the load-displacement and energy absorption characteristics. This paper describes an FE modelling investigation with the explicit code LS−DYNA. An automatic mesh generation programme written by the authors is used to set up shell and solid element tube models. Mesh specification issues and features relating to the contact and friction models are discussed in detail. The crush modes, load-deflection characteristics and energy absorption values found in the simulations are compared with a reasonable degree of correlation to those observed in a physical testing programme; however, improvements are still required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tool deflection during milling operation leads to dimensional error, decreasing surface quality and increasing rejection rate. In this study, tool deflection during the milling of the inner surfaces of Ti–6Al–4V prosthetic acetabular shell produced by selective laser melting (SLM) was modelled. The first purpose of this research is to provide a general static cutting tool deflection model for ball nose cutters where deviation of machine components and tool holder are so small as to be considered negligible. This is because the values of machine component and tool holder deflection were lower than standard tolerances (10 μm) and found to be lower than 1/15 of tool deflection. The second and third objectives of this work involve calculating contact surfaces by determining workpiece and tool geometry and choosing second moment of inertia using a novel cross section method (CSM). Static models for three quasi-analytical methods (QAM) that are simple cantilever beam model (SCBM), two-section model (TWSM) and our three section model (THSM) are presented. THSM showed high accuracy which was validated by 3D finite element method (FEM3D) and experimental measurements. The accuracy of tool deflection calculation using THSM by computing, shank, flute and ball head deflection and also utilizing CSM to determine second moment of inertia showed notable improvements.