121 resultados para Sheet-metal work - Simulation methods

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examines the methods for numerical modelling of the springback effect in TRansformation Induced Plasticity (TRIP) steels under conditions of various bending processes. It represents a largely unexplored part of the TRIP steel literature and therefore makes a valuable contribution toward a practical approach to predicting springback in TRIP steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated how the variation in inputs, such as material and processing conditions affected the shape defect phenomenon (springback) for sheet metal forming processes. Using a stochastic Finite Element modelling tool, it was found that the material type and fluctuations in material properties significantly influenced the variation in springback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examines the use of surface coatings in stamping using an overall systems approach. The effects of die coating surface properties on friction, wear and part strain, have been studied in-plant with an emphasis on optimising the tool coating system to provide robust sheet metal forming procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A material model for more thorough analysis of plastic deformation of sheet materials is presented in this paper. This model considers the following aspects of plastic deformation behavior of sheet materials: (1) the anisotropy in yield stresses and in work hardening by using Hill's 1948 quadratic yield function and non-constant stress ratios which leads to different flow stress hardening in different directions, (2) the anisotropy in plastic strains by using a quadratic plastic potential function and non-associated flow rule, also based on Hill's 1948 model and r-values, and (3) the cyclic hardening phenomena such as the Bauschinger effect, permanent softening and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening model. Plasticity fundamentals of the model were derived in a general framework and the model calibration procedure was presented for the plasticity formulations. Also, a generic numerical stress integration procedure was developed based on backward-Euler method, so-called multi-stage return mapping algorithm. The model was implemented in the framework of the finite element method to evaluate the simulation results of sheet metal forming processes. Different aspects of the model were verified for two sheet metals, namely DP600 steel and AA6022 aluminum alloy. Results show that the new model is able to accurately predict the sheet material behavior for both anisotropic hardening and cyclic hardening conditions. The drawing of channel sections and the subsequent springback were also simulated with this model for different drawbead configurations. Simulation results show that the current non-associated anisotropic hardening model is able to accurately predict the sidewall curl in the drawn channel sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work looks at two different “Design of Experiments”(DoE) methods for defining an operating window in the sheet metal stamping process. The first involves the use of replicates at the different experimental points, while the second is a nonreplicated method. The two methods are compared by looking at the relationship results produced and the indication of variation in the process. It is found that the results from both the methods are very similar. However, the replicated method provides a greater level of confidence in the results. In the stamping process, where performing large numbers of replicates is expensive in both time and money, the nonreplicated method provides a cost effective way of understanding the process.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the car body stamping process, trim/blank die cutting edges are subjected to very high tribological loads that result in loss of tool material from both the punch and die cutting edges. According to Archard’s wear model, normal contact force and sliding distance directly affects the wear. Therefore, knowledge of the acting forces on local contact areas has a pivotal role towards the prediction of tool wear. This paper presents a finite element modelling approach to determining the contact pressure distribution on the tool cutting edges during a trimming/blanking process. Characteristic areas on sheared edge profile, variation of punch force and high contact pressures affected areas have also been analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variation in the incoming sheet material and fluctuations in the press setup is unavoidable in many stamping plants. The effect of these variations can have a large influence on the quality of the final stamping, in particular, unpredictable springback of the sheet when the tooling is removed. While stochastic simulation techniques have been developed to simulate this problem, there has been little research that connects the influence of the noise sources to springback. This paper characterises the effect of material and process variation on the robustness of springback for a semi-cylindrical channel forming operation, which shares a similar cross-section profile as many automotive structural components. The study was conducted using the specialised sheet metal forming package AutoFormTM Sigma, for which a series of stochastic simulations were performed with each of the noise sources incrementally introduced. The effective stress and effective strain scatter in a critical location of the part was examined and a response window, which indicates the respective process robustness, was defined. The incremental introduction of the noise sources allows the change in size of the stressstrain response window to be tracked. The results showed that changes to process variation parameters, such as BHP and friction coefficient, directly affect the strain component of the stressstrain response window by altering the magnitude of external work applied to forming system. Material variation, on the other hand, directly affected the stress component of the response window. A relationship between the effective stressstrain response window and the variation in springback was also established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To quantify the frictional behaviour in sheet forming operations, several laboratory experiments which simulate the real forming conditions are performed. The Bending Under Tension Test is one such experiment which is often used to represent the frictional flow of sheet material around a die or a punch radius. Different mathematical representations are used to determine the coefficient of friction in the Bending Under Tension Test. In general the change in the strip thickness in passing over the die radius is neglected and the radius of curvature to thickness ratio is assumed to be constant in these equations. However, the effect of roller radius, sheet thickness and the surface pressure are also omitted in some of these equations. This work quantitatively determined the effect of roller radius and the tooling pressure on the coefficient of friction. The Bending Under Tension Test was performed using rollers with different radii and also lubricants with different properties. The tool radii were found to have a direct influence in the contact pressure. The effect of roller radius on friction was considerable and it was observed that there is a clear relationship between the contact pressure and the coefficient of friction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse model for a sheet meta l forming process aims to determine the initial parameter levels required to form the final formed shape. This is a difficult problem that is usually approached by traditional methods such as finite element analysis. Formulating the problem as a classification problem makes it possible to use well established classification algorithms, such as decision trees. Classification is, however, generally based on a winner-takes-all approach when associating the output value with the corresponding class. On the other hand, when formulating the problem as a regression task, all the output values are combined to produce the corresponding class value. For a multi-class problem, this may result in very different associations compared with classification between the output of the model and the corresponding class. Such formulation makes it possible to use well known regression algorithms, such as neural networks. In this paper, we develop a neural network based inverse model of a sheet forming process, and compare its performance with that of a linear model. Both models are used in two modes, classification mode and a function estimation mode, to investigate the advantage of re-formulating the problem as a function estimation. This results in large improvements in the recognition rate of set-up parameters of a sheet metal forming process for both models, with a neural network model achieving much more accurate parameter recognition than a linear model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inherent variability in incoming material and process conditions in sheet metal forming makes quality control and the maintenance of consistency extremely difficult. A single FEM simulation is successful at predicting the formability for a given system, however lacks the ability to capture the variability in an actual production process due to the numerical deterministic nature. This paper investigates a probabilistic analytical model where the variation of five input parameters and their relationship to the sensitivity of springback in a stamping process is examined. A range of sheet tensions are investigated, simulating different operating windows in an attempt to highlight robust regions where the distribution of springback is small. A series of FEM simulations were also performed, to compare with the findings from the analytical model using AutoForm Sigma v4.04 and to validate the analytical model assumptions.

Results show that an increase in sheet tension not only decreases springback, but more importantly reduces the sensitivity of the process to variation. A relative sensitivity analysis has been performed where the most influential parameters and the changes in sensitivity at various sheet tensions have been investigated. Variation in the material parameters, yield stress and n-value were the most influential causes of springback variation, when compared to process input parameters such as friction, which had a small effect. The probabilistic model presented allows manufacturers to develop a more comprehensive assessment of the success of their forming processes by capturing the effects of inherent variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on development of a method to statistically study forming and springback problems of TRansformation Induced Plasticity (TRIP) through an industrial case study. A Design of Experiments (DOE) approach was used to study the sensitivity of predictions to four user input parameters in implicit and explicit sheet metal forming codes. Numerical results were compared to experimental measurements of parts stamped in an industrial production line. The accuracy of forming strain predictions for TRIP steel were comparable with conventional steel, but the springback predictions of TRIP steel were far less accurate. The statistical importance of selected parameters for forming and springback prediction is also discussed. Changes of up to ±10% in Young's modulus and coefficient of friction were found to be insignificant in improving or deteriorating the statistical correlation of springback accuracies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tool wear has become a significant issue associated with the forming of high strength sheet steels in the automotive industry. In order to combat this problem, recent research has been devoted to utilizing the contact results obtained from current sheet metal forming software predictions, in order to develop/apply tool wear models or tool material selection criteria for use in the stamping plant. This investigation aims to determine whether a specialized sheet metal forming software package can correctly capture the complex contact conditions that occur during a typical sheet metal stamping process. The contact pressure at the die radius was compared to results obtained using a general-purpose finite element software package, for a simple channel-forming process. Although some qualitative similarities between the two predictions were observed, it was found that significant differences in the magnitude and distribution of the contact pressure exists. The reasons for the discrepancies in results are discussed with respect to the simplifications and assumptions adopted in the finite element model definitions, and with regards to other results available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact conditions at the die radius are of primary importance to the wear response for many sheet metal forming processes. In particular, a detailed understanding of the contact pressure at the wearing interface is essential for the application of representative wear tests, the use of wear resistant materials and coatings, the development of suitable wear models, and for the ultimate goal of predicting tool life. However, there is a lack of information concerning the time-dependant nature of the contact pressure response in sheet metal stamping. This work provides a qualitative description of the evolution and distribution of contact pressure at the die radius for a typical channel forming process. Through an analysis of the deformation conditions, contact phenomena and underlying mechanics, it was identified that three distinct phases exist. Significantly, the initial and intermediate stages resulted in severe and localised contact conditions, with contact pressures significantly greater than the blank material yield strength. The final phase corresponds to a larger contact area, with steady and smaller contact pressures. The proposed contact pressure behaviour was compared to other results available in the literature and also discussed with respect to tool wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A metal/polymer laminate is a new light weight sheet material suitable to replace conventional steel or aluminium sheet in future car designs. In this study the effect of material composition and process conditions on the forming behaviour of metal/polymer laminates in sheet metal forming was investigated by experimental, analytical and numerical methods.