19 resultados para Shear bond strength test

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fibre reinforced polymer (CFRP) sheet has gained its popularity to retrofit civil structures which is bonded externally, typically on the soffit of a beam. In this study, the bond between carbon fibre reinforced polymer (CFRP) and concrete is improved by modifying the property of commercial epoxy and compared against normal epoxy. The deterioration in bond strength was produced by placing the beam into salt water under wet dry cycles. Also, a model is proposed to determine the bond strength from flexural test and compared against the available bond strength models which are typically obtained from pull out test. This proposed model shows promising results in terms of predicting the bond strength from flexural test. In addition, a strength reduction factor is introduced to incorporate the effect of wet dry cycles to predict the long term behaviour. It is found that the modified epoxy enhance the ductile property and bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives
The purpose of this study was to investigate the bond strength of apatite layer on titanium (Ti) substrate coated by biomimetic method and to improve the bonding of apatite layer to Ti substrate by optimizing the alkali heat-treatment process.

Methods
Ti plates pre-treated with an alkali solution of 10 M sodium hydroxide (NaOH) were heat-treated at 600 °C for 1 h at different atmospheres: in air and in vacuum. A dense apatite layer formed on top of the sodium titanate layer after soaking the alkali and heat-treated Ti samples in simulated body fluid (SBF) for up to 3 weeks. The bond strengths of the sodium titanate layer on Ti substrate, and apatite layer on the sodium titanate layer, were measured, respectively, by applying a tensile load. The fracture sites were observed with a scanning electron microscope (SEM).

Results
The apatite layer on the substrate after alkali heat-treatment in air achieved higher bond strength than that on the substrate after alkali heat-treatment in vacuum. It was found that the interfacial structure between the sodium titanate and Ti substrate has a significant influence on the bond strength of the apatite layer.

Significance
It is advised that titanium implants can achieve better osseointegration under load-bearing conditions by depositing an apatite layer in vivo on a Ti surface subjected to alkali and heat-treated in air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bond strength of various metal multilayers produced by cold rolling of metal foils with different thermal conductivity was investigated. Results indicated that the metallic multilayer system with low thermal conductivity exhibited relative high bond strength while high thermal conductivity metal system may fail to be roll-bonded together. The relationship between the deformation-induced localized heating and the bond strength were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bond strength of various metal multilayers produced by cold rolling of metal foils with different thermal conductivity was investigated. Results indicated that under the same conditions of deformation and surface preparation, the metallic multilayer system with low thermal conductivity exhibited relative high bond strength while high thermal conductivity metal system may fail to be roll-bonded together. The relationship between the deformation-induced localized heating and the bond strength were discussed. The deformation-induced localized heating in the low thermal conductivity metal multilayer systems may provide opportunities for achieving a successful accumulative roll bonding or a “cold roll/heat treatment/cold roll” process to synthesize metallic multilayer materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-repetition maximum (1RM) test is considered the gold standard for assessing muscle strength in non-laboratory situations. Since most previous 1RM reliability studies have been conducted with experienced young participants, it is unclear if acceptable test–retest reliability exists for untrained middle-aged individuals. This study examined the reliability of the 1RM strength test of untrained middle-aged individuals. Fifty-three untrained males (n = 25) and females (n = 28) aged 51.2 ± 0.9 years participated in the study. Participants undertook the first 1RM test (T1) 4–8 days after a familiarisation session with the same exercises. 1RM was assessed for seven different exercises. Four to eight days after T1, participants underwent another identical 1RM test (T2). Ten weeks later, 27 participants underwent a third test (T3). Intraclass correlation coefficients (ICC), typical error as a coefficient of variation (TEcv), retest correlation, repeated measures ANOVA, Bland–Altman plots, and estimation of 95% confidence limits were used to assess reliability. A high ICC (ICC > 0.99) and high correlation (r > 0.9) were found for all exercises. TEcv ranged from 2.2 to 10.1%. No significant change was found for six of the seven exercises between T1 and T2. Leg press was slightly higher at T2 compared to T1 (1.6 ± 0.6%, p = 0.02). No significant change was found between T2 and T3 for any exercise. 1RM is a reliable method of evaluating the maximal strength in untrained middle-aged individuals. It appears that 1RM-testing protocols that include one familiarisation session and one testing session are sufficient for assessing maximal strength in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Strengthened concrete structures using advanced materials such as CFRP composites has been proved an efficient technique. The bonding agent (epoxy resin) used to bond the CFRP composites with the concrete structures is the main parameter that contributes to premature failure. I was able to recommend to a new modified epoxy resin to enhance the general behavior of the strengthened concrete structure with respect to durability and ductility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium phosphate (Ca-P) coatings were deposited on Ti substrates by a biomimetic method from m-SBF and 10× SBF, respectively. Comparative study of microstructures and bond strengths of the Ca-P coatings deposited from those different SBFs was carried out. Effect of the surface roughness of the substrates on the bond strength of the Ca-P coatings was also studied. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transformed infrared spectroscopy (FTIR), inductive coupled plasma spectrometry (ICP) and thermogravimetry (TG) were used to characterize the Ca-P coatings. The bond strengths between the coatings and Ti substrates were measured using an adhesive strength test. Results indicated that the ionic concentrations of the SBFs and the surface roughness of the substrate had a significant influence on the formation, morphology and bond strength of the Ca-P precipitates. The induction period of time to deposit a complete Ca-P layer from the m-SBF is much longer, but the Ca-P coating is denser and has higher bond strength than that formed from the 10× SBF. The Ti with a surface roughness of Ra 0.64 µm and Rz 2.81 µm favoures the formation of a compact Ca-P coating from the m-SBF with the highest bond strength of approximately 15.5 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melding, a novel method for joining composites is examined in this paper. The method uses Quickstep ™ technology to retain partially cured areas of a composite laminate, enabling subsequent bonding operations. The effect of melding on the mechanical properties of the composite has been investigated. Flexural testing of HexPly 914 indicates consistent properties throughout a melded section. Flexural strength values of 1.36±O.03 GPa compared to 1.35±O.03 GPa for a standard laminate were recorded. In order to achieve sufficient bond strength, the portion of the composite to be joined must have a significant proportion of uncured matrix. The ability of Hexply 914 prepreg to retain sufficient bonding potential to form a strong joint was also investigated. HexPly 914 Lap Shear results indicated no significant variation in strength values between co-cured and melded joins, with a recorded
strength value of 15.0±0. 7 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper nanocrystallite apatite coating on TiZr substrate was prepared by a biomimetic process. Surface morphology, thickness, crystalline phases a~nd bond strength of the coating were investigated by SEM, XRD and tensIle test, respectively. Results show that the apatite coating exhibIts a nanocrystalIite structure with similar stoichiometry to that of natural bone. The apatite layer becomes thicker with the increasing of the SBF immersion time and is firmly adhered to the substrate with the highest average bond strength of 15.5 MPa. This nanocrystallite apatite coating is expected to bond to surrounding bone tissue directly in vivo after implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathodic disbondment (CD) performance of a range of modified polyethylenes (PE) compression molded on to steel plates at 320[degrees]C is reported. Adhesion strength was measured by the 90[degrees] peel test and good dry adhesion strength was obtained for all modified polyethylene materials and blends, as well as for the neat polymer. It is shown that dry bond strength does not correlate with CD performance. Initial results of wet peel tests of samples in various concentrations of NaOH are presented where it is observed that for samples with improved wet adhesion strength, CD performance was also Improved. Surface polarity was determined from contact angle measurements, and it is shown that increased surface polarity of the coating was not the only determinant for improved CD performance. Inorganic fillers such as talc were also found to improve CD performance by changing the bulk properties, with little measurable change in polarity. Some mechanistic aspects of CD performance are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melding, a novel method for producing seamless joints in thermosetting composites utilising the Quickstep™ process, is explored in this paper. The effect of processing conditions on the quality of melded joins is examined and a set of processing boundaries defined so that the strength of melded joints is optimized. HexPly® 914c pre-preg material was exposed to a range of processing temperatures prior to joining via the melding process. Differential Scanning Calorimetry analysis was carried out to investigate the degree of cure of material prior to final joining, and it was found that minimal cure occurs at temperatures below 120°C. After consolidation and cure of the melded parts, short beam shear testing was conducted to evaluate the strength of the melded interface. Exposure temperatures between 65°C and 120°C were found to optimize short beam shear join strength. Mode I double cantilever beam and mode II end notched flexural tests showed no detrimental effect of elevated exposure temperatures prior to joining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slab-girder bridges are widely used in Australia. The shear connection between reinforced concrete slab and steel girder plays an important role in composite action. In order to test the suitability and efficiency of various vibration-based damage identification methods to assess the integrity of the structure, a scaled composite bridge model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to link the beam and slab that were cast separately. In this test, two static loads were acted in the 1/3 points of the structure. In the first stage, dynamic test was conducted under different damage scenarios, where a number of shear connectors were removed step by step. In the second stage, the static load is increased gradually until concrete slab cracked. Static tests were conducted continuously to monitor the deflection and loading on the beam. Dynamic test was carried out before and after concrete cracking. Both static and dynamic results can be used to identify damage in the structure.