13 resultados para Shear Tests

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to produce lighter weight, yet safer vehicles has led to the need to understand the crash behaviour of novel materials, such as fibre reinforced polymer composites, metallic foams and sandwich structures. This paper discusses the static indentation response of Carbon Fibre Reinforced Polymer (CFRP) tubes. The side impact on a CFRP tube involves various failure mechanisms. This paper highlights these mechanisms and compares the energy absorption of CFRP tubes with similar Aluminium tubes. The response of the CFRP tubes during bending was modelled using ABAQUS finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The load bearing capacity of aging reinforced concrete structures, such as bridges, is increasingly extended with the use of Carbon Fibre Reinforced Polymer (CFRP). Premature failure, which is attributed to the rigid behaviour of the bonding agent (epoxy resin) and the high stresses at the interface region, can occur because of the debonding of CFRP sheets from host surfaces. To overcome the debonding issue, the epoxy resin is modified by different reactive liquid polymers to improve its toughness, flexibility, adhesion, and impact resistance. This study reports the usage of two reactive liquid polymers, namely, liquid Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) and liquid Amine-Terminated Butadiene-Acrylonitrile (ATBN), to improve the mechanical properties of the commercially available MBrace saturant resin when added to a ratio of 100:30 by weight. The neat and modified epoxies were analysed using the Dynamic Mechanical Thermal Analysis (DMTA) to determine and compare the storage modulus and glass transition temperatures of these materials. Moreover, the bonding strength of neat and modified epoxies was evaluated through single-lap shear tests on CFRP sheets bonded to concrete prisms. The results indicate that the modified resins exhibited improved ductility and toughness and became reasonably flexible compared with the neat epoxy resin. The improved properties will help delay the premature debonding failure in CFRP retrofitted concrete members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although profiled steel sheets have the diaphragm effect in steel structure, since there is no specific code to follow in China, it is only used as the reservation of the structural stiffness.So it results in economic wastes.In order to investigate the contribution of stressed skin to the overall stiffness, field tests are carried out to measure the lateral stiffness of the frames with and without stressed skin diaphgram.Based on the superposition principle and using the curve fitting method, the test results are quantified.The shear rigidity of stressed skin diaphgram spanning several purlins is gained indirectly.It shows that the shear rigidity of the diaphragm between two frames is even close to the lateral stiffness of one frame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation of the shear strengths of composite plate girders, with centrally placed rectangular web cutouts, is described. A series of tests is conducted on short‐span girders having conventional welded stud shear connectors, connecting the composite concrete slabs to the top flanges of the plate girders. These tests indicated that it is the tensile or pullout capacity of the connectors that is primarily responsible for sustaining the composite action under predominantly shear loading. Subsequently, a further series of tests is conducted on short‐span girders with bolted tension connectors, designed to offer negligible resistance to horizontal shear forces at the interfaces between the concrete slabs and plate girders, which confirmed the previous conclusion. Both series of tests indicate that if adequate connectors are provided between a plate girder and a composite concrete slab, the shear strength of the composite girder is significantly higher than that of the plate girder alone. A simple analytical model for predicting the shear strengths of composite plate girders is also presented, which shows satisfactory correlation with the test results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slab-girder bridges are widely used in Australia. The shear connection between reinforced concrete slab and steel girder plays an important role in composite action. In order to test the suitability and efficiency of various vibration-based damage identification methods to assess the integrity of the structure, a scaled composite bridge model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to link the beam and slab that were cast separately. In this test, two static loads were acted in the 1/3 points of the structure. In the first stage, dynamic test was conducted under different damage scenarios, where a number of shear connectors were removed step by step. In the second stage, the static load is increased gradually until concrete slab cracked. Static tests were conducted continuously to monitor the deflection and loading on the beam. Dynamic test was carried out before and after concrete cracking. Both static and dynamic results can be used to identify damage in the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results from experiments conducted in a 2m high flow compartment at large Reynolds numbers are reported in this paper. Flow entered the compartment through an opening at the base on one side of the compartment and exited from an opening at the bottom of the opposite wall of the compartment. A shear layer is formed at the boundary between the incoming flow and the ambient fluid in the compartment. The impingement of the shear layer on the opposite wall of the compartment gives rise to periodic vortex formation and highly organized oscillations in the shear layer. When a density interface is present inside the compartment, resonance conditions were set up when the oscillations of the internal standing waves were “locked in” with the shear layer oscillations. Under resonance conditions, internal standing waves with amplitudes of up to 0.1m were observed. The formation of the internal standing waves is linked to the shear layer oscillations. Resonance conditions result when the shear layer is oscillating close to the natural frequency of the stratified fluid system in the compartment. The results of this investigation are applicable for fresh water storage in floating bottom-opened tanks in the sea, where under resonance conditions, entrainment rates could be significantly increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When investigating sediment transport in laboratory open-channel flows, it is often necessary to remove sidewall effects for computing effective bed shear stress. Previous sidewall correction methods are subject to some assumptions that have not been completely verified, and different values of the bed shear stress may be obtained depending on the approach used in making sidewall corrections. This study provides a quantitative assessment of the existing correction procedures by comparing them to a new sidewall correction model proposed in this study. The latter was derived based on the shear stress function and equivalent roughness size for both rigid and mobile bed conditions, which were obtained directly from experimental measurements. The comparisons show that the Einstein correction formula and the Vanoni and Brooks method generally predict relatively lower and higher bed shear stresses, respectively, while the Williams’ empirical function leads to more scatter. This study also demonstrates that the widely used Vanoni and Brooks approach can be well approximated by a simple formula derived based on the Blasius resistance function. The sidewall effects, when removed in the different ways, would consequently affect the presentation of the bedload function. Experimental results of bedload transport, when plotted as the dimensionless transport rate against the dimensionless shear stress with the latter being corrected using the present model, exhibit less scatter than those associated with the previous procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A macroscopic ductile fracture criterion is proposed based on micro-mechanism analysis of nucleation, growth and shear coalescence of voids from experimental observation of fracture surfaces. The proposed ductile fracture model endows a changeable cut-off value for the stress triaxiality to represent effect of micro-structures, the Lode parameter, temperature, and strain rate on ductility of metals. The proposed model is used to construct fracture loci of AA 2024- T351. The constructed fracture loci are compared with experimental data covering wide stress triaxiality ranging between –0.5 and 1.0. The comparison suggests that the proposed model can provide a satisfactory prediction of ductile fracture for metals from compressive upsetting tests to plane strain tension with slanted fracture surfaces. Moreover, it is expected that the proposed model reasonably describes ductile fracture behavior in high velocity perforation simulation since a reasonable cut-off value for the stress triaxiality is coupled with the proposed ductile fracture criterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

'Heterogeneous twinning' is defined as plastic deformation due to the formation and progress of twins resulting in surface wrinkles on the deforming part when the initial grain size is relatively large compared to the typical size of the part. In the case of a Twinning Induced Plasticity (TWIP) steel with an initial grain size of ~160. m, the heterogeneous twinning generated visible wrinkles, an orange peel effect, under medium uni-axial strains. The heterogeneous twinning did not occur in the material subjected to high shear strains. The complications resulting from this phenomenon on strain hardening characterization of the TWIP steels using two commonly used mechanical tests, tensile and torsion are discussed along with some experimental aspects of heterogeneous twinning. © 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micron size aluminum particles (Figure 1) are deformed into “interlocked splats” at room temperature under high pressure and shear. Sample's induced inner architecture is examined (Figure 2). Tests are carried out to characterize material's heterogeneous properties (Figure 3). Presented formulation of the test data indicates an excellent shear strength; stronger than its solid counterpart.