13 resultados para Shatter Cones

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colour and luminance-contrast thresholds were measured in the presence of dynamic Random Luminance-contrast Masking (RLM) in individuals who had had past diagnoses of optic neuritis (ON) some of whom have progressed to a diagnosis of multiple sclerosis (MS). To explore the spatio-temporal selectivity of chromatic and luminance losses in MS/ON, thresholds were measured using three different sizes and modulation rates of the RLM displays: small checks modulating slowly, medium-sized checks with moderate modulation and large checks modulating rapidly. The colour of the chromatic stimuli used were specified in a cone-excitation space to measure relative impairments in red–green and blue–yellow chromatic channels. These observers showed chromatic thresholds along the L/(L + M) axis that were higher than those along the S-cone axis for all display sizes/modulation rates and both red-green and blue-yellow colour thresholds were higher than luminance-contrast thresholds. The principal change in thresholds with spatio-temporal changes in the display was a reduction in thresholds for L/(L + M) and S-cones with increasing check size and modulation rate. However, luminance contrast thresholds did not change with display size/rate. These results are consistent with MS/ON selectively affecting processing in colour pathways rather than in the magnocellular pathway, and that within the colour pathways neurones with opposed L- and M-cone inputs are more damaged than colour-opponent neurons with input from S-cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploring western philosophies which have shifted down through time but have also held firm on key features that dominate, separate and shatter at the core I realised this was not us as I tried to "develop the right orientation to ourselves and our place first" (Meyer2003 : 60) as an Arabana udyurla. Thus, despite there being some opportunity here and there within these philosophic positions I turned to the Ularaka -- the Arabana worldview -- to consider methodology and method drawing from our ancient knowledge. The sun shone brightly. I was able to 'See...hear...feel and smell (take it in)' -- think. My approach shifted from a marking out of an Indigenous space within or being an addendum to western philosophies to understanding and therefore doing from an embodiment and embodying within the ontologies and cultural knowledge of the Ularaka. From here while in dialogue with and being 'grown' or mentored by key Elders, I could powerfully experience, engage and interpret 'data' from an Indigenous knowledge position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avian vision is highly developed, with bird retinas containing rod and double-cone photoreceptors, plus four classes of single cones subserving tetrachromatic colour vision. Cones contain an oil droplet, rich in carotenoid pigments (except VS/ultraviolet-sensitive cones), that acts as a filter, substantially modifying light detected by the photoreceptor. Using dietary manipulations, we tested the effects of carotenoid availability on oil droplet absorbance properties in two species: Platycercus elegans and Taeniopygia guttata. Using microspectrophotometry, we determined whether manipulations affected oil droplet carotenoid concentration and whether changes would alter colour discrimination ability. In both species, increases in carotenoid concentration were found in carotenoid-supplemented birds, but only in the double cones. Magnitudes of effects of manipulations were often dependent on retinal location. The study provides, to our knowledge, the first experimental evidence of dietary intake over a short time period affecting carotenoid concentration of retinal oil droplets. Moreover, the allocation of carotenoids to the retina by both species is such that the change potentially preserves the spectral tuning of colour vision. Our study generates new insights into retinal regulation of carotenoid concentration of oil droplets, an area about which very little is known, with implications for our understanding of trade-offs in carotenoid allocation in birds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although UV vision was first demonstrated in birds in the early 1970s, its function is still unknown. Here we review the evidence for UV vision in birds, discuss the special properties of UV light, lay out in detail hypotheses for the function of UV vision in birds and discuss their plausibility. The main hypotheses are that UV vision functions: (i) in orientation, (ii) in foraging and (iii) in signalling. The first receives support from studies of homing pigeons, but it would be unwise to conclude that orientation is UV's primary function in all birds. It is especially important to test the signalling hypothesis because bird plumage often reflects UV and tests of theories of sexual selection have virtually always assumed that birds perceive plumage ''colours'' as humans do. A priori this assumption is unlikely to be correct, for unlike humans, birds see in the UV, have at least four types of cones and have a system of oil droplets which filters light entering individual cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Pal trs caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (lambda(max)) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitive-single cones of both species cut off wavelengths below 570-573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise lambda(max) of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy also varies between the two species and may reflect differences in their visual ecology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas humans have three types of cone photoreceptor, birds have four types of single cones and, unlike humans, are sensitive to ultraviolet light (UV, 320-400 run). Most birds are thought to have either a violet-sensitive single cone that has some sensitivity to UV wavelengths (for example, many non-passerine species) or a single cone that has maximum sensitivity to UV (for example, oscine passerine. species). UV sensitivity is possible because, unlike humans, avian ocular media do not absorb UV light before it reaches the retina. The different single cone types and their sensitivity to UV light give birds the potential to discriminate reflectance spectra that look identical to humans. It is clear that birds use UV signals for a number of visual tasks, but there are few studies that directly demonstrate a role for UV in the detection of chromaticity differences (i.e. colour vision) as opposed to achromatic brightness. If the output of the violet/UV cone is used in achromatic visual tasks, objects reflecting more UV will appear brighter to the bird. 11, however, the output is used in a chromatic mechanism, birds will be able to discriminate spectral stimuli according to the amount of reflected light in the UV part of the spectrum relative to longer wavelengths. We have developed a UV 'colour blindness' test, which we have given to a passerine (European starling) and a non-passerine (Japanese quail) species. Both species learnt to discriminate between a longwave control of orange vs red stimuli and UV vs 'non-UV' stimuli, which were designed to be impossible to differentiate by achromatic mechanisms. We therefore conclude that the output of the violet/UV cone is involved in a chromatic colour vision system in these two species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To defeat the heirs of the enlightenment with their own weapon i.e. reason itself. To reduce all philosophy all science all views to irrational meaningless babble using their own epistemic conditions of truth. To confound the products of reason by reason itself. To show that the rational in fact collapses into the irrational. By reason itself all products of human reason reduce to intellectual chaos. To shatter the categories of thought, to rob all views and ideas of any epistemic worth by using reason to show that they end in stultification foolishness, or absurdity. Reason confounds reason and convicts reason by it's own standard to unintelligibility, babble, stultification, incoherence foolishness and absurdity, or meaninglessness. Reasons critique of reason shows that there is no consistency in ally product of reason, no order , no coherence only chaos and absurdity, or meaninglessness. The life-jacket, or anchor reason gives in the void of meaninglessness is broken by reason itself. Into the void of nothing reason drops us. Cut adrift in meaninglessness we are free to acquire other insights other realizations by transcending reason. Meaning can be reduced to absurdity. Meaninglessness can be reduced to absurdity but for those who hold meaninglessness as a view, or meaning there is no hope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis tests the processability theory (PT) (Pienemann 1998;2005) predictions for agreement morphology in the acquisition of Arabic L2. The thesis has demonstrated that, apart from a few cases, learners of Arabic L2 acquired the test structures according to the PT's predictions for L2 sequential development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter argues that one key legacy of the US effort to bring democracy to Iraq has been that many elements within Iraq’s Shia Arab political elite have viewed democracy through the lens of a cynical majoritarianism and manipulated it to catapult themselves to power. This has had a further legacy, enabling the democratically elected government of Prime Minister Nouri al-Maliki to utilise his incumbency to maintain the veneer of democracy while becoming increasingly dictatorial and authoritarian. In doing so, Maliki’s government shares much in common with other ‘hybrid regimes’ in which governments hijack nominally democratic mechanisms such as elections, media freedoms, political opposition and civil society as part of their strategy to retain, rather than diffuse, power (Dodge 2012b, 2013). Although Maliki hasdeployed a host of different strategies along these lines – including blatant sectarianism, undermining key state institutions, the creation of a shadow state loyal to himself, and the concentration of military and political power in his own hands – this chapter focuses on Maliki’s less well-known efforts to shatter the unity of his Shia Arab political opponents. It focuses on his first two terms in power and examines the ways in which he has been able to systematically fracture the Shia political elite to such an extent that once tenuously united factions now stand bitterly divided. The chapter concludes by reflecting on the reasoning behind such an approach and the prospects of Iraq’s democracy moving beyond the blatant power grab of the incumbent Malikigovernment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes, suggesting tetrachromacy in C. decresii, and we also provide the first evidence of UV sensitivity in agamid lizards.