2 resultados para Seeder

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is causing fire regime shifts in ecosystems worldwide. Plant species with regeneration strategies strongly linked to a fire regime, such as obligate seeders, may be particularly threatened by these changes. It is unclear whether changes in fire regimes or the direct effects of climate change will be the dominant threats to obligate seeders in future. We investigated the relative importance of fire-related variables (fire return interval andfire severity) and environmental factors (climate and topography) on seedling establishment in the world's tallest angiosperm, an obligate seeder, Eucalyptus regnans. Throughout its range, this species dominates the wet montane forests of south-eastern Australia and plays a keystone role in forest structure. Following major wildfires, we investigated seedling establishment in E. regnanswithin 1 year of fire as this is a critical stage in the regeneration niche of obligate seeders. Seedling presence and abundance were strongly related to the occurrence of fire but not to variation in fire severity (moderate vs. high severity). Seedling abundance increased with increasing fire return interval (range 26-300 years). First-year seedling establishment was also strongly associated with low temperatures and with high elevations, high precipitation and persistent soil water availability. Our results show that both climate and fire regimes are strong drivers of E. regnans seedling establishment. The predicted warming and drying of the climate might reduce the regeneration potential for some obligate seeders in future and these threats are likely to be compounded by changes in fire regimes, particularly increases in fire frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Knowledge of how climate and fire regimes affect regeneration in foundation species is critical to the conservation of entire ecosystems. Different stages of regeneration often require different ecological conditions, but dynamic constraints on regeneration are poorly known for species that regenerate only after infrequent wildfires. Focussing on a long-lived, foundation tree species (Eucalyptus regnans), we tested the hypothesis that the relative importance of fire regime variables (fire severity and time since previous fire) and environmental gradients on post-fire regeneration would shift as seedlings developed. Location: South-eastern Australia. Methods: Following a large (> 59,000 ha) summer wildfire in 2009, we sampled 131 sites (61 burnt) annually for four years (2009-2012), representing the range of environmental conditions in which E. regnans occurs. We analysed the effect of fire severity, time since fire and environmental variables on early regeneration processes critical for post-fire species distributions: seedling establishment, seedling density and growth through different height stages (10 cm, 25 cm, 50 cm and 200 cm). Results: The regeneration niche of E. regnans was defined by different factors at different stages of development. Initially, seedlings established prolifically on burnt sites, regardless of severity. Three years into the regeneration process, high-severity fire became the dominant driver of seedling persistence and growth over 25 cm. Growth over 50 cm was dependent on environmental conditions relating to elevation and precipitation. Main conclusions: Our results describe how fire occurrence, fire severity and environmental gradients affected seedling establishment, persistence and growth. The dynamic constraints on regeneration likely reflect temporal changes in the biotic and abiotic environment and variation in resource requirements during the early post-fire years. Our findings will enable more accurate forecasts of species distributions to assist forest conservation in the face of global changes in climate and fire regimes.