6 resultados para Second Electron Donor

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The invention provides a method for enantioselectively reducing a prochiral carbon centred radical having one or more electron donor groups attached directly to the central prochiral carbon atom of the radical, and/or attached to a carbon atom within 1 to 4 atoms of the central prochiral carbon atom, comprising treating said radical with a chiral non-racemic organogermanium hydride in the presence of a Lewis acid. The invention also provides a novel class of chiral non-racemic organogermanium hydrides and a method of preparing chiral non-racemic organogermanium compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl) dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using 1H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material. © 2014 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two solution processable, non-fullerene electron acceptors, 2,2′-(((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-exahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))dimalononitrile (R1) and (2Z,2′Z)-3,3′-((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(2-(4-nitrophenyl) acrylonitrile) (R2), comprised of central naphthalene diimide and two different terminal accepting functionalities, malononitrile and 2-(4-nitrophenyl)acetonitrile, respectively, were designed and synthesised. The central and terminal accepting functionalities were connected via a mild conjugated thiophene linker. Both of the new materials (R1 and R2) displayed high thermal stability and were found to have energy levels matching those of the archetypal electron donor poly(3-hexylthiophene). A simple, solution-processable bulk-heterojunction device afforded a promising power conversion efficiency of 2.24% when R2 was used as a non-fullerene electron acceptor along with the conventional donor polymer poly(3-hexylthiophene). To the best of our knowledge, the materials reported herein are the first examples in the literature where synchronous use of such accepting blocks is demonstrated for the design and development of efficient non-fullerene electron acceptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure is proposed to determine, for second-phase particles near a crack tip, the maximum particle stresses at the moment of void initiation by either particle fracture or particle/matrix interface separation. A digital image analysis system is applied to perform a quantitative analysis of corresponding fracture surface regions from stereo image pairs taken in the scanning electron microscope. The fracture surface analysis is used to measure, for individual particles, the crack tip opening displacement at the moment of void initiation and the particle location with respect to the crack tip. From these data, the stress tensor at the moment of void initiation is calculated from the Hutchinson–Rice–Rosengren (HRR) field theory. The corresponding average local stresses within the particle are evaluated by a non-linear Mori–Tanaka-type approach. These stresses are compared to estimates according to the models by Argon et al. [A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6 (1975) 825] and Beremin [F.M. Beremin, Metall. Trans. 12 (1981) 723]. The procedure is demonstrated on an Al6061–10% Al2O3 metal matrix composite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chromatographic capacity factors (log k‘) for 32 structurally diverse drugs were determined by high performance liquid chromatography (HPLC) on a stationary phase composed of phospholipids, the so-called immobilized artificial membrane (IAM). In addition, quantitative structure-retention relationships (QSRR) were developed in order to explain the dependence of retention on the chemical structure of the neutral, acidic, and basic drugs considered in this study. The obtained retention data were modeled by means of multiple regression analysis (MLR) and partial least squares (PLS) techniques. The structures of the compounds under study were characterized by means of calculated physicochemical properties and several nonempirical descriptors. For the carboxylic compounds included in the analysis, the obtained results suggest that the IAM-retention is governed by hydrophobicity factors followed by electronic effects due to polarizability in second place. Further, from the analysis of the results obtained of two developed quantitative structure-permeability studies for 20 miscellaneous carboxylic compounds, it may be concluded that the balance between polarizability and hydrophobic effects is not the same toward IAM phases and biological membranes. These results suggest that the IAM phases could not be a suitable model in assessing the acid-membrane interactions. However, it is not possible to generalize this observation, and further work in this area needs to be done to obtain a full understanding of the partitioning of carboxylic compounds in biological membranes. For the non-carboxylic compounds included in the analysis, this work shows that the hydrophobic factors are of prime importance for the IAM-retention of these compounds, while the specific polar interactions, such as electron pair donor−acceptor interactions and electrostatic interactions, are also involved, but they are not dominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor, 6,6′-((9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (coded as N7), based on central carbazole and terminal diketopyrrolopyrrole building blocks was designed, synthesized and characterized. N7 displayed excellent solubility, thanks to its design allowing incorporation of numerous lipophilic chains, thermal stability, and afforded a 2.30% power conversion efficiency with a high open-circuit voltage (1.17 V) when tested with the conventional donor polymer poly(3-hexylthiophene) in solution-processable bulk-heterojunction devices. To our knowledge, not only is N7 the first reported chromophore based on carbazole and diketopyrrolopyrrole functionalities but the open-circuit voltage reported here is among the highest values for a single junction bulk-heterojunction device that has been fabricated using a simple device architecture, with reproducible outcomes and with no special treatment.