2 resultados para Scene understanding

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a novel framework for large-scale scene understanding in static camera surveillance. Our techniques combine fast rank-1 constrained robust PCA to compute the foreground, with non-parametric Bayesian models for inference. Clusters are extracted in foreground patterns using a joint multinomial+Gaussian Dirichlet process model (DPM). Since the multinomial distribution is normalized, the Gaussian mixture distinguishes between similar spatial patterns but different activity levels (eg. car vs bike). We propose a modification of the decayed MCMC technique for incremental inference, providing the ability to discover theoretically unlimited patterns in unbounded video streams. A promising by-product of our framework is online, abnormal activity detection. A benchmark video and two surveillance videos, with the longest being 140 hours long are used in our experiments. The patterns discovered are as informative as existing scene understanding algorithms. However, unlike existing work, we achieve near real-time execution and encouraging performance in abnormal activity detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines film rhythm, an important expressive element in motion pictures, based on our ongoing study to exploit film grammar as a broad computational framework for the task of automated film and video understanding. Of the many, more or less elusive, narrative devices contributing to film rhythm, this paper discusses motion characteristics that form the basis of our analysis, and presents novel computational models for extracting rhythmic patterns induced through a perception of motion. In our rhythm model, motion behaviour is classified as being either nonexistent, fluid or staccato for a given shot. Shot neighbourhoods in movies are then grouped by proportional makeup of these motion behavioural classes to yield seven high-level rhythmic arrangements that prove to be adept at indicating likely scene content (e.g. dialogue or chase sequence) in our experiments. Underlying causes for this level of codification in our approach are postulated from film grammar, and are accompanied by detailed demonstration from real movies for the purposes of clarification.