22 resultados para Scanning probe microscopy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has focused on measuring the adhesion forces on both untreated and atmospheric helium plasma treated single jute fibre surfaces using scanning probe microscopy (SPM). The measurements were conducted on three differently aged surfaces for one week, three weeks and six weeks using a standard silicon nitride tip in force-volume (f-v) mode. Up to 256 adhesion data points were collected from various locations on the surface of the studied fibres using in-house developed software and the resulting data were statistically analysed by the histogram method. Results obtained from this analysis method were found to be very consistent with a small statistical variation. The work of adhesion, Wa, was calculated from measured adhesion force using the Johnson–Kendall–Roberts (JKR) and Derjaguin–Muller–Toporov (DMT) models. Increases in both adhesion force and work of adhesion were observed on jute fibre with certain levels of atmospheric plasma treatment and ageing time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different modes of scanning electrochemical mapping (SECM) such as surface generation/tip collection (SG/TC), amperometry, AC-SECM and potentiometry were employed to characterize the active/passive domains, hydrogen gas (H2) evolution and local pH on a corroding surface of AZ31 in simulated biological fluid (SBF). It was found that the main domains of H2 evolution are associated with lower insulating properties of the surface as well as higher local pH. The near surface pH was found to be highly alkaline indicating that, even in a buffered solution such as SBF, the local pH on a corroding AZ31 surface can be significantly different to the bulk pH. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In transmission and scanning electron microscopy imaging, the ability to obtain sufficient contrast between the components of a blend when they are both of a similar chemical structure still remains problematic. This paper investigates the domain morphology of a polymer blend containing two polyamides, nylon 6 and the semi-aromatic polyamide poly(m-xylene adipamide) (MXD6), using scanning electron microscopy in backscattered electron imaging mode. The efficiency of three staining agents, ruthenium tetroxide, phosphotungstic acid and silver sulfide, in obtaining optimum phase contrast between the two polymers is discussed.
RESULTS: The use of silver sulfide as a staining agent was found to be a fast and reliable approach which required basic sample preparation and provided excellent compositional contrast between the phases present in the nylon 6/MXD6 blends compared to the other staining agents.
CONCLUSIONS: The technique described in this paper is believed to be a novel and versatile method that has the potential to further improve the ability to study complex polymer blends where one polymer contains an aromatic ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have achieved three-dimensional imaging of decanethiol self-assembled monolayers (SAMs) on metal surfaces by atom probe tomography (APT). The present Letter provides preliminary results on Ni [001] and Au [111], shows the analytical potential of APT analysis of SAMs, and details developments in specimen preparation and in data-treatment methodologies. Importantly, the investigation of the mass spectra from analysis of the SAMs revealed no combination of sulfur and hydrogen at the interface between the metal substrates and the organic materials, potentially providing insight about the bonding of the thiols on the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of the dielectrophoretic (DEP) live cell trapping technology and its interfacing with the environmental scanning electron microscopy (ESEM) is described. DEP microelectrode arrays were fabricated on glass substrate using photolithography and lift-off. Chip-based arrays were applied for ESEM analysis of DEP-trapped human leukemic cells. This work provides proof-of-concept interfacing of the DEP cell retention and trapping technology with ESEM to provide a high-resolution analysis of individual nonadherent cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solidification microstructure is a defining link between production techniques and the mechanical properties of metals and in particular steel. Due to the difficulty of conducting solidification studies at high temperature, knowledge of the development of solidification microstructure in steel is scarce. In this study, a laser-scanning confocal microscopy (LSCM) has been used to observe in situ and in real-time the planar to cellular to dendritic transition of the progressing solid/liquid interface in low carbon steel. Because the in situ observations in the laser-scanning confocal microscopy are restricted to the surface, the effect of sample thickness on surface observations was determined. Moreover, the effect of cooling rate and alloy composition on the planar to cellular interface transition was investigated. In the low-alloyed, low-carbon steel studied, the cooling rate does not seem to have an effect on the spacing of the cellular microstructure. However, in the presence of copper and manganese, the cell spacing decreased at higher cooling rates. Higher concentrations of copper in steel resulted on an increased cell spacing at the same cooling rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new fabric with potential in medical textiles has been developed by application of a surface coating on wool using pulsed plasma polymerization of HMDSO. This coating enabled a controllable MVTR and surface adhesion. MVTR in the range recommended for optimum wound healing was obtained by varying frequency, monomer pressure and deposition time. Lower surface adhesion was achieved. Peeling tests, contact angle measurements, SPM force curves and ATR FT-IR were used to characterize the surfaces for both wool and a PE model substrate. All these results were consistent with a decrease in surface energy after PP-HMDSO treatment. ATR FT-IR results showed a siloxane film with less organic Si(CH3)n groups and more SiOSi cross-links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric pressure plasma treatment of wool fabric, with a relatively short exposure time, effectively removed the covalently bonded lipid layer from the wool surface. The plasma-treated fabric showed increased wettability and the fibres showed greater roughness. X-ray photoelectron spectroscopy (XPS) analysis showed a much more hydrophilic surface with significant increases in oxygen and nitrogen concentrations and a decrease in carbon concentration. Adhesion, as measured by scanning probe microscopy (SPM) force volume analysis, also increased, consistent with the more hydrophilic surface leading to a greater meniscus force on the SPM probe. The ageing of fibres from the plasma-treated fabric was assessed over a period of 28 days. While no physical changes were observed, the chemical nature of the surface changed significantly. XPS showed a decrease in the hydrophilic nature of the surface with time, consistent with the measured decrease in wettability. This change is proposed to be due to the reorientation of proteolipid chains. SPM adhesion studies also showed the surface to be changing with time. After ageing for 28 days, the plasma-treated surface was relatively stable and still dramatically different from the untreated fibre, suggesting that the oxidation of the surface and modification or removal of the lipid layer were permanent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun polyelectrolyte hydrogel nanofibres are being developed for many applications including artificial muscles, scaffolds for tissue engineering, wound dressings and controlled drug release. For electrospun polyelectrolytes, a post-spinning crosslinking process is necessary for producing a hydrogel. Typically, radiation or thermal crosslinking routines are employed that require multifunctional crosslinking molecules and crosslink reaction initiators (free radical producers). Here, ultraviolet subtype-C (UVC) radiation was employed to crosslink neat poly(acrylic acid) (PAA) nanofibres and films to different crosslink densities. Specific crosslink initiators or crosslinking molecules are not necessary in this fast and simple process providing an advantage for biological applications. Scanning probe microscopy was used for the first time to measure the dry and wet dimensions of hydrogel nanofibres. The diameters of the swollen fibres decrease monotonically with increasing UVC radiation time. The fibres could be reversibly swollen/contracted by treatment with solutions of varying pH, demonstrating their potential as artificial muscles. The surprising success of UVC radiation exposure to achieve chemical crosslinks without a specific initiator molecule exploits the ultrathin dimensions of the PAA samples and will not work with relatively thick samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.