3 resultados para Saint-Martin, Louis Claude de, 1743-1803.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major obstacle to the design of a global HIV-1 vaccine is viral diversity. At present, data suggest that a vaccine comprising a single antigen will fail to generate broadly reactive B-cell and T-cell responses able to confer protection against the diverse isolates of HIV-1. While some B-cell and T-cell epitopes lie within the more conserved regions of HIV-1 proteins, many are localized to variable regions and differ from one virus to the next. Neutralizing B-cell responses may vary toward viruses with different i) antibody contact residues and/or ii) protein conformations while T-cell responses may vary toward viruses with different (i) T-cell receptor contact residues and/or (ii) amino acid sequences pertinent to antigen processing. Here we review previous and current strategies for HIV-1 vaccine development. We focus on studies at St. Jude Children's Research Hospital (SJCRH) dedicated to the development of an HIV-1 vaccine cocktail strategy. The SJCRH multi-vectored, multi-envelope vaccine has now been shown to elicit HIV-1-specific B- and T-cell functions with a diversity and durability that may be required to prevent HIV-1 infections in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central obstacle to the design of a global HIV vaccine is viral diversity. Antigenic differences in envelope proteins result in distinct HIV serotypes, operationally defined such that antibodies raised against envelope molecules from one serotype will not bind envelope molecules from a different serotype. The existence of serotypes has presented a similar challenge to vaccine development against other pathogens. In such cases, antigenic diversity has been addressed by vaccine design. For example, the poliovirus vaccine includes three serotypes of poliovirus, and Pneumovax® presents a cocktail of 23 pneumococcal variants to the immune system. It is likely that a successful vaccine for HIV must also comprise a cocktail of antigens. Here, data relevant to the development of cocktail vaccines, designed to harness diverse, envelope-specific Bcell and T-cell responses, are reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central obstacle to the design of a global HIV-1 vaccine is virus diversity. Pathogen diversity is not unique to HIV-1, and has been successfully conquered in other fields by the creation of vaccine cocktails. Here we describe the testing of an HIV-1 envelope cocktail vaccine. Six macaques received the vaccine, delivered by successive immunizations with recombinant DNA, recombinant vaccinia virus and recombinant envelope proteins. Following vaccination, animals developed a diversity of anti-envelope antibody binding and neutralizing activities toward proteins and viruses that were not represented by sequence in the vaccine. T-cells were also elicited, as measured by gamma-interferon production assays with envelope-derived peptide pools. Vaccinated and control animals were then challenged with the heterologous pathogenic SHIV, 89.6P. Vaccinated monkeys experienced significantly lower virus titers and better maintenance of CD4+ T-cells than unvaccinated controls. The B- and T-cell immune responses were far superior post-challenge in the vaccinated group. Four of six vaccinated animals and only one of six control animals survived a 44-week observation period post-challenge. The present report is the first to describe pathogenic SHIV disease control mediated by a heterologous HIV-1 vaccine, devoid of 89.6 or SIV derivatives.