59 resultados para SURFACTANT

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAN nanofibres were prepared via an electrospinning process. The effect of polymer concentration on the fibre morphology was studied. At a very dilute solution, no fibres were obtained in the electrospinning process. As the concentration increased, the fibre morphology evolved from a beads-on-string structure to a uniform fibre structure with increasing fibre diameters. However, when the same electrospinning process was conducted with the addition of a cationic surfactant, the formation of disconnected beads was prevented, and the number of beads-on-string structures reduced significantly. In addition, the presence of cationic surfactant reduced the average diameter of the electrospun PAN nanofibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike other fibres, wool felts readily when agitated in the presence of water. For this reason, only the minimum necessary quantity of water is used when the garments are drycleaned. However, wool fibres are often deliberately felted to obtain a warm bulky handle by controlled addition of water to the solvent. This process is known as solvent milling and recently, it has become a popular alternative to the traditional milling in water alone. Although the factors which influence milling in solvent are known, the relationships between them are not well defined. A comprehensive study of the relationship between water distribution and milling shrinkage during agitation of wool in perchloroethylene has been carried out in this thesis. The Karl Fischer method of determination was used throughout to establish the distribution of water between the wool fibre and the solvent liquor. The emphasis was placed on practical production variables. The role of surfactant in affecting milling shrinkage through its effect on the transport of water to the fibre from the solvent was examined. The ability of a suitable surfactant in promoting even and rapid sorption of water by the fibre was related to the colloidal properties of the milling liquor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promising alternative. The presence of surfactants can increase the solubility of PAHs and hence potentially increase their bioavailability. However, inconclusive results have been reported on the effects of surfactant on the biodegradation of PAHs. In this work, surfactant-mediated biodegradation of PAHs is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preconcentration of phenanthrene from aqueous solution was discussed. The study was carried out by using a slightly hydrophobic nonionic surfactant. The slightly hydrophobic surfactant, at proper condition enhanced the performance of the surfactant-based extraction process on polycyclic aromatic hydrocarbons (PAH). The results show that the increasing the temperature difference enhanced the preconcentration factors prominently but only slightly the recovery efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of regular additions of a surfactant (ethylene bis-stearamide; EBS) at different time intervals was investigated on the powder characteristics of a biomedical Ti-10Nb-3Mo alloy (wt.%). Ball milling was performed for 10 h on the elemental powders in four series of experiments at two rotation speeds (200 and 300 rpm). The addition of 2 wt.% total EBS at different time intervals during ball milling resulted in noticeable changes in particle size and morphology of the powders. The surfactant addition at shorter time intervals led to the formation of finer particles, a more homogenous powder distribution, a higher powder yield, and a lower contamination content in the final materials. Thermal analysis of the powders after ball milling suggested that differing decomposition rates of the surfactant were responsible for the measured powder particle changes and contamination contents. The results also indicated that the addition of surfactant during ball milling at 200 rpm caused a delay in the alloy formation, whereas ball milling at 300 rpm favored the formation of the titanium alloy.Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effects of varying amounts of surfactant (ethylene bis-stearamide; EBS) and milling time on the compressibility of ball-milled Ti-10Nb-3Mo (wt.%) alloy were investigated. Ball milling process was performed on the elemental powders with different amounts of EBS (0-3. wt.%) for 5 and 10. h, and the ball-milled powders were consolidated by a uniaxial cold pressing in the range of 500-1100. MPa. Results indicated that the addition of surfactant in ball milling process lead to significant changes in particle packing density. The relative density was higher for powders ball milled with larger amounts of EBS and for the shorter milling time. The compressibility of powders was examined by the compaction equation developed by Panelli and Ambrosio Filho. The densification parameter (A) increased with the increasing amount of EBS, and decreased with increasing milling time.