57 resultados para SUMO-1 Protein -- metabolism

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both acute (24 h) and chronic (10–20 week) exposure of human fibroblast cells to low dose sodium arsenite (As(III)) significantly affects activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) DNA binding activity. Short-term treatment with 0.1–5 μM As(III) up-regulates expression of c-Fos and c-Jun and the redox regulators, thioredoxin (Trx) and Redox factor-1 (Ref-1) and activates both AP-1 and NF-κB binding. Chronic exposure to 0.1 or 0.5 μM As(III) decreased c-Jun, c-Fos and Ref-1 protein levels and AP-1 and NF-κB binding activity, but increased Trx expression. Short term exposure to phorbol 12-myristate 13-acetate (TPA), a phorbol ester tumour promoter, or hydrogen peroxide (H2O2) also activates AP-1 and NF-κB binding. However, pre-treatment with As(III) prevents this increase. These results suggest that As(III) may alter AP-1 and NF-κB activity, in part, by up-regulating Trx and Ref-1. The different effects of short- versus long-term As(III) treatment on acute-phase response to oxidative stress reflect changes in the expression of Ref-1, c-Fos and c-Jun, but not Trx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creatine (Cr) plays a key role in cellular energy metabolism and is found at high concentrations in metabolically active cells such as skeletal muscle and neurons. These, and a variety of other cells, take up Cr from the extra cellular fluid by a high affinity Na+/Cl--dependent creatine transporter (CrT). Mutations in the crt gene, found in several patients, lead to severe retardation of speech and mental development, accompanied by the absence of Cr in the brain.
In order to characterize CrT protein(s) on a biochemical level, antibodies were raised against synthetic peptides derived from the N- and C-terminal cDNA sequences of the putative CrT-1 protein. In total homogenates of various tissues, both antibodies, directed against these different epitopes, recognize the same two major polypetides on Western blots with apparent Mr of 70 and 55 kDa. The C-terminal CrT antibody (α-CrTCOOH) immunologically reacts with proteins located at the inner membrane of mitochondria as determined by immuno-electron microscopy, as well as by subfractionation of mitochondria. Cr-uptake experiments with isolated mitochondria showed these organelles were able to transport Cr via a sulfhydryl-reagent-sensitive transporter that could be blocked by anti-CrT antibodies when the outer mitochondrial membrane was permeabilized. We concluded that mitochondria are able to specifically take-up Cr from the cytosol, via a low-affinity CrT, and that the above polypeptides would likely represent mitochondrial CrT(s). However, by mass spectrometry techniques, the immunologically reactive proteins, detected by our anti-CrT antibodies, were identified as E2 components of the agr-keto acid dehydrogenase multi enzyme complexes, namely pyruvate dehydrogenase (PDH), branched chain keto acid dehydrogenase (BC-KADH) and α-ketoglutarate dehydrogenase (α-KGDH). The E2 components of PDH are membrane associated, whilst it would be expected that a mitochondrial CrT would be a transmembrane protein. Results of phase partitioning by Triton X-114, as well as washing of mitochondrial membranes at basic pH, support that these immunologically cross-reactive proteins are, as expected for E2 components, membrane associated rather than transmembrane. On the other hand, the fact that mitochondrial Cr uptake into intact mitoplast could be blocked by our α-CrTCOOH antibodies, indicate that our antisera contain antibodies reactive to proteins involved in mitochondrial transport of Cr. The presence of specific antibodies against CrT is also supported by results from plasma membrane vesicles isolated from human and rat skeletal muscle, where both 55 and 70 kDa polypeptides disappeared and a single polypeptide with an apparent electrophoretic mobility of ~ 60 kDa was enriched This latter is most likely representing the genuine plasma membrane CrT.
Due to the fact that all anti-CrT antibodies that were independently prepared by several laboratories seem to cross-react with non-CrT polypeptides, specifically with E2 components of mitochondrial dehydrogenases, further research is required to characterise on a biochemical/biophysical level the CrT polypeptides, e.g. to determine whether the ~ 60 kDa polypeptide is indeed a bona-fide CrT and to identify the mitochondrial transporter that is able to facilitate Cr-uptake into these organelles. Therefore, the anti-CrT antibodies available so far should only be used with these precautions in mind. This holds especially true for quantitation of CrT polypeptides by Western blots, e.g. when trying to answer whether CrT's are up- or down-regulated by certain experimental interventions or under pathological conditions.
In conclusion, we still hold to the scheme that besides the high-affinity and high-efficiency plasmalemma CrT there exists an additional low affinity high Km Cr uptake mechanism in mitochondria. However, the exact biochemical nature of this mitochondrial creatine transport, still remains elusive. Finally, similar to the creatine kinase (CK) isoenzymes, which are specifically located at different cellular compartments, also the substrates of CK are compartmentalized in cytosolic and mitochondrial pools. This is in line with 14C-Cr-isotope tracer studies and a number of [31P]-NMR magnetization transfer studies, as well as with recent [1H]-NMR spectroscopy data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and objectives The digestion rate of proteins and subsequent absorption of amino acids can independently modulate protein metabolism. The objective of the present study was to examine the blood amino acid response to whey protein isolate (WPI), β-lactoglobulin-enriched WPI, hydrolysed WPI and a flavour-identical control.

Methods Eight healthy adults (four female, four male) were recruited (mean±standard error of the mean: age, 27.0±0.76 years; body mass index, 23.2±0.8 kg/cm2) and after an overnight fast consumed 500 ml of each drink, each containing 25g protein, in a cross-over design. Blood was taken at rest and then every 15 min for 2 h post ingestion.

Results Ingesting the β-lactoglobulin-enriched WPI drink resulted in significantly greater plasma leucine concentrations at 45-120 min and significantly greater branched-chain amino acid concentrations at 60-105 min post ingestion compared with hydrolysed WPI. No differences were observed between WPI and β-lactoglobulin-enriched WPI, and all protein drinks resulted in elevated blood amino acids compared with flavour-identical control.

Conclusions In conclusion, whole proteins resulted in a more rapid absorption of leucine and branched-chain amino acid into the blood compared with the hydrolysed molecular form of whey protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now evident that host cells have evolved a remarkable variety of antiretroviral activities to defend themselves against viral invaders and in return viruses have developed ingenious ways to circumvent these defences and, in some cases, actually hijack cellular proteins in order to facilitate their replication. Study of this cat and mouse interplay between viruses and their host cells throughout evolution has lead to the identification of some of the most sophisticated antiviral strategies that mammals have developed to prevent viral infection. Recently, a wave of publications has significantly enhanced our understanding of the relationship between human immunodeficiency virus type 1 (HIV-1) and its host, including: 1) the HIV-1 protein Vif and its interaction with host cell nucleic acid editing enzymes; 2) the host cell restrictive factors that provide protection against retroviral infection, such as TRIM5; and 3) the late domains of retroviruses and their relationship with the host cell vacuolar protein sorting pathway. The focus of this review is to provide an up-to-date account of these important areas of HIV-1 research and highlight how some of these new discoveries can potentially be exploited for the development of novel anti-retroviral therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last 50 years, the number of individuals over the age of 65 years in the United States has doubled. A further doubling is expected by 2030, dramatically increasing the number of adults at risk of sarcopenia, a condition characterized by an age-related loss of muscle mass with an associated reduction in physical function. A reduction in muscle mass and functional capacity is typically viewed as an undesirable, yet inevitable, consequence of aging, and in its early stages, may be easily masked by subtle lifestyle adaptations. However, advanced sarcopenia is synonymous with physical frailty and is associated with an increased likelihood of falls and impairments in the ability to perform routine activities of daily living. In many instances, the progression of sarcopenia is mirrored by a decrease in physical activity, which feeds into a vicious cycle of disuse and negative outcomes, including impaired insulin action, accelerated loss of muscle and bone mass, fatigue, impaired motor control and functional capacity, and increased morbidity and mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle glycogen is an important fuel for contracting skeletal muscle during prolonged strenuous exercise, and glycogen depletion has been implicated in muscle fatigue. It is also apparent that glycogen availability can exert important effects on a range of metabolic and cellular processes. These processes include carbohydrate, fat and protein metabolism during exercise, post-exercise glycogen resynthesis, excitation–contraction coupling, insulin action and gene transcription. For example, low muscle glycogen is associated with reduced muscle glycogenolysis, increased glucose and NEFA uptake and protein degradation, accelerated glycogen resynthesis, impaired excitation–contraction coupling, enhanced insulin action and potentiation of the exercise-induced increases in transcription of metabolic genes. Future studies should identify the mechanisms underlying, and the functional importance of, the association between glycogen availability and these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murray cod is a top-order carnivore with high culture potential. Currently, there are no commercial diets formulated specifically for Murray cod. In this study, results of two growth trials on Murray cod (80–83.5-g mean initial weight), conducted in commercial settings, using two laboratory-formulated diets (DU1 and DU2; 48.9% and 49.1% protein, and 16.9% and 16.1% lipid, respectively, on a dry matter basis), and two commercial diets, formulated for other species (salmon – CD/S and barramundi – CD/B) but used in Murray cod farming are presented. The two commercial diets had less protein (46.6% and 44.4%) but higher lipid (21.7% and 19.5%). The energy content of the feeds tested was similar (about 20–22 kJ g−1). The growth performance and feed utilization of Murray cod did not differ significantly amongst the diets, but the food conversion ratio and % protein efficiency ratio in fish fed the DU1 and DU2 diets were consistently better. There was significantly less carcass and muscle lipid deposition in fish fed with the latter diets. Of the fatty acids in muscle, the lowest amounts (in μg mg lipid−1) of n-3 (262.5±2.9), n-6 (39.8±0.9) and polyunsaturated fatty acid (PUFA) (302.3±3.8) were observed in fish fed CD/S, and the highest in fish fed DU2 and CD/B. Fatty acids 16:0 and 18:0, 18:1n-9 and 16:1n-7, and 22:6n-3, 20:5n-3, 22:5n-3 and 18:2n-6 were the dominant fatty acids amongst the saturates, monoenes and PUFA, respectively, and accounted for 80.8–88.7% of all identified fatty acids (23) in muscle of Murray cod. The study showed that Murray cod could be cultured successfully on a diet (DU2) containing 20% soybean meal without compromising growth and/or carcass quality. Differences in the proximate composition and fatty acid composition of muscle of wild and farmed Murray cod were observed, the most obvious being in the latter. Wild Murray cod had significantly less (P<0.05) saturates (192.6±1.84 vs. 266.3±3.51), monoenes (156.5±8.7 vs. 207.6±6.19), n-3 (145.2±5.24 vs. 261.8±3.2) but higher n-6 (144.3±2.73 vs. 48.3±1.38) in muscle (all values are in μg mg lipid−1) than in farmed fish. Wild fish also had a much lower n-3 to n-6 ratio (1.0±0.03 vs. 5.4±0.09).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
Constitutive activation of Stat5 has been observed in a variety of malignancies, particularly myeloid leukemias. To directly investigate the in vivo consequences of Stat5 perturbation, we expressed constitutively active forms in zebrafish.
Methods
We generated mutants of the zebrafish stat5.1 protein (N646H, H298R/N714F, and N714F) based on previously identified constitutively active mutants of murine Stat5a. The in vitro properties of these mutants were determined using phosphorylation-specific antibodies and luciferase reporter assays, and their in vivo effects were analyzed through microinjection of zebrafish embryos.
Results
Two of these stat5.1 mutants (N646H and H298R/N714F) showed increased tyrosine phosphorylation and transactivation activity compared to the wild-type protein. Expression of either mutant led to a range of hematological perturbations, which were more pronounced for the H298R/N714F mutant. Interestingly, expression of wild-type also produced generally similar phenotypes. Further analysis showed that expression of the H298R/N714F mutant led to increased numbers of early and late myeloid cells, erythrocytes, and B cells. Some nonhematopoietic developmental perturbations were also observed, but these were equally prominent with wild-type or mutant forms.
Conclusion
These data implicate Stat5 activity as a direct critical regulator of hematological cell proliferation, suggesting a causal role for constitutively-active Stat5 in the etiology of hematological malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways.
Objectives: To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70S6K glycogen synthase kinase-3ß (GSK-3ß), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass.
Methods: Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively.
Measurements and Main Results: The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70S6K, GSK-3ß, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70S6K, GSK-3ß, and 4E-BP1 compared with patients with COPD with preserved muscle mass.
Conclusions: An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biochemical and molecular processes that maintain the stem cell pool, and govern the proliferation and differentiation of haemopoietic stem/progenitor cells (HSPCs) have been widely investigated but are incompletely understood. The purpose of this study was to identify and characterise novel genes that may play a part in regulating the mechanisms that control the proliferation, differentiation and self-renewal of human HSPCs. Reverse transcription differential display polymerase chain reaction (dd-PCR) was used to identify differences in gene expression between a HSPC population defined by expression of the CD34 phenotype, and the more mature CD34 depleted populations. A total of 6 differentially expressed complementary deoxyribonucleic acid (cDNA) sequences were identified. Four of these transcripts were homologous to well characterised genes, while two (band 1 and band 20) were homologous to unknown and uncharacterised partial gene sequences on the GenBank database and were thus chosen for further investigation. The partial cDNA sequences for band 1 and band 20 were designated ORP-3 and MERP-1 (respectively) due to homologies with other well-characterised gene families. Differential expression of the ORP-3 and MERP-1 genes was confirmed using Taqman™ real-time polymerase chain reaction (PCR) with 3 - 4-fold and 4-10 -fold higher levels in the CD34+ fractions of haemopoietic cells compared to CD34- populations respectively. Additionally, expression of both these genes was down regulated with proliferation and differentiation of CD34+ cells further confirming higher expression in a less differentiated subset of haemopoietic cells. The full coding sequences of ORP-3 and MERP-1 were elucidated using bioinformatics, rapid amplification of cDNA ends (RACE) and PCR amplification. The MERP-1 cDNA is 2600 nucleotides (nt) long, and localizes by bioinformatics to chromosome 7.. It consists of three exons and 2 introns spanning an entire length of 31.4 kilobases (kb). The MERP-1 open reading frame (ORF) codes for a putative 344 amino acid (aa) type II transmembrane protein with an extracellular C-terminal ependymin like-domain and an intracellular N-terminal sequence with significant homology to the cytoplasmic domains of members of the protocadherin family of transmembrane glycoproteins. Ependymins and protocadherins are well-characterised calcium-dependant cell adhesion glycoproteins. Although the function of MERP-1 remains to be elucidated, it is possible that MERP-1 like its homologues plays a role in calcium dependent cell adhesion. Differential expression of the MERP-1 gene in haemopoietic cells suggests a role in haemopoietic stem cell proliferation and differentiation, however, its broad tissue distribution implies that it may also play a role in many cell types. Characterization of the MERP-1 protein is required to elucidate these possible roles. The ORP-3 cDNA is 6631nt long, and localizes by bioinformatics to chromosome 7pl5-p21. It consists of 23 exons and 22 introns spanning an entire length of 183.5kb. The ORP-3 ORF codes for a putative 887aa protein which displays the consensus sequence for a highly conserved oxysterol-binding domain. Other well-characterised proteins expressing these domains have been demonstrated to bind oxysterols (OS) in a dose dependant fashion. OS are hydroxylated derivatives of cholesterol Their biological activities include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, including haemopoietic cells. Differential expression of the ORP-3 gene in haemopoietic cells suggests a possible role in the transduction of OS effects on haemopoietic cells, however, its broad tissue distribution implies that it may also play a role in many cell types. Further investigation of ORP-3 gene expression demonstrates a significant correlation with CD34+ sample purity, and 2-fold higher expression in a population of haemopoietic cells defined by the CD34+38- phenotype compared to more mature CD34+38+ cells. This finding, taken together with the previous observation of down-regulation of ORP-3 expression with proliferation and differentiation of CD34+ cells, indicates that ORP-3 expression may be higher in a less differentiated subset of cells with a higher proliferative capacity. This hypothesis is supported by the observation that expression of the ORP-3 gene is approximately 2-fold lower in differentiated HL60 promyelocytic cells compared to control, undifferentiated cells. ORP-3 expression in HL60 cells during normal culture conditions was also found to vary with expression positively correlated with cell number. This indicates a possible cell cycle effect on ORP-3 gene expression with levels highest when cell density, and therefore the percentage of cells in G(0)/G(1) phase of the cell cycle is highest. This observation also correlates with the observation of higher ORP-3 expression in CD34+38-cells, and in CD34+ and HL60 cells undergoing OS induced and camptothecin induced apoptosis that is preceded by cell cycle arrest at G(0)/G(1). Expression of the ORP-3 gene in CD34+ HSPCs from UCB was significantly decreased to approximately half the levels observed in control cells after 24 hours incubation in transforming growth factor beta-1 (TGFâl). As ≥90% of these cells are stimulated into cell cycle entry by TGFâl, this observation further supports the hypothesis that ORP-3 expression is highest when cells reside in the G(0)/G(1) phase of the cell cycle. Data obtained from investigation of ORP-3 gene expression in synchronised HL60 cells however does not support nor disprove this hypothesis. Culture of CD34+ enriched HSPCs and HL60 cells with 25-OHC significantly increased ORP-3 gene expression to approximately 1.5 times control levels. However, as 25-OHC treatment also increased the percentage of apoptotic cells in these experiments, it is not valid to make any conclusions regarding the regulation of ORP-3 gene expression by OS. Indeed, the observation that camptothecin induced apoptosis also increased ORP-3 gene expression in HL60 cells raises the possibility that up-regulation of ORP-3 gene expression is also associated with apoptosis, Taken together, expression of the ORP-3 gene appears to be regulated by differentiation and apoptosis of haemopoietic progenitors, and may also be positively associated with proliferative and G(0)/G(1) cell cycle status indicating a possible role in all of these processes. Given the important regulatory role of apoptosis in haemopoiesis and differential expression of the ORP-3 gene in haemopoietic progenitors, final investigations were conducted to examine the effects OS on human HSPCs. Granulocyte/macrophage colony forming units (CFU-GM) generated from human bone marrow (ABM) and umbilical cord blood (UCB) were grown in the presence of varying concentrations of three different OS - 7keto-cholesterol (7K-C), 7beta-hydroxycholesterol (7p-OHC) and 25-hydroxycholesterol (25-OHC). Similarly, the effect of OS on HL60 and CD34+ cells was investigated using annexin-V staining and flow cytometry to measure apoptosis. Reduction of nitroblue tetrazolium (NBT) was used to assess differentiative status of HL60 cells. CFU-GM from ABM and HL60 growth was inhibited by all three OS tested, with 25-OHC being the most potent. 25-OHC inhibited ≥50% of bone marrow CFU-GM and ≥95% of HL60 cell growth at a level of 1 ug/ml. Compared to UCB, CFU-GM derived from ABM were more sensitive to the effects of all OS tested. Only 25-OHC and 7(5-OHC significantly inhibited growth of UCB derived CFU-GM. OS treatment increased the number of annexin-V CD34+ cells and NBT positive HL60 cells indicating that OS inhibition of CFU-GM and HL60 cell growth can be attributed to induction of apoptosis and differentiation. From these studies, it can be concluded that dd-PCR is an excellent tool for the discovery of novel genes expressed in human HSPCs. Characterisation of the proteins encoded by the novel genes ORP-3 and MERP-1 may reveal a regulatory role for these genes in haemopoiesis. Finally, investigations into the effects of OS on haemopoietic progenitor cells has revealed that OS are a new class of inhibitors of HSPC proliferation of potential relevance in vivo and in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II diabetes is characterised by hyperglycemia and disturbances of fat, carbohydrate and protein metabolism. It occurs mainly in adults, with obesity being the most modifiable risk factor. This project utilised the Israeli Sand Rat (Psammomys obesus) and some of the latest molecular biology technology including differential display, membrane microarray and real-time PCR to detect genes in the liver that may be associated with the development of Type II diabetes and/or obesity. This study showed calpain, a proteolytic inhibitor and calpastatin, its natural inhibitor to be disregulated in the liver during the diabetic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alkaline thermo-tolerant lipase from Bacillus coagulans MTCC-6375 was purified and efficiently immobilized onto a synthetic hydrophobic poly (MAc-co-DMA-cl-MBAm)-hydrogel at pH 8.5 and temperature 55°C in 16 h. The hydrogel bound matrix possessed 7.6 IU g -1 matrix lipase activity with a specific activity of 18 IU mg -1 protein. Immobilized lipase was used to catalyze the esterification of lauric acid and ethanol to produce ethyl laurate in n-nonane. The reaction conditions that were optimized to produce ethyl laurate in n-nonane included enzyme/substrate (E/S) ratio, substrate concentration, reaction time and reaction temperature. The optimized parameters were E/S ratio of 0.5 mg mM -1, ethanol:lauric acid in ratio of 100 mM:100 mM and reaction time of 15 h at 65°C under continuous shaking (200 rpm). Optimized conditions resulted in 66% conversion of reactants into ethyl laurate in n-nonane in the presence of 300 mg molecular sieve mL -1 reaction mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.