6 resultados para SPIN STRUCTURE

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BN-based nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis. © 2009 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copolymerization of lithium 2-acrylamido-2-methyl-1-propane sulfonate (LiAMPS) with N,N ′-dimethylacrylamide has yielded polyelectrolyte systems which can be gelled with an ethylene carbonate/N ′,N ′-dimethylacetamide solvent mixture and show high ionic conductivities. 7Li linewidth and relaxation times as well as 1H NMR diffusion coefficients have been used to investigate the effect of copolymer composition as well as copolymer concentration in the gel electrolyte with respect to ionic transport and polyelectrolyte structure. It appears that ion association is likely even in the case of low lithium salt concentration; however a rapid exchange exists between the associated and non-associated lithium species. Beyond 0.2 M of LiAMPS, both the conductivity and solvent diffusion reach a plateau, whilst lithium ion linewidth and spin-spin relaxation are suggestive, on average, of a less mobile species. The thermal analysis data is also supportive of this association effectively leading to a form of phase separation on the nanoscale, which gives a lower overall activity of lithium ions in the solvent rich regions beyond about 0.2 M of LiAMPS, thereby leading to an increase in the final liquidus temperature of the binary liquid solvent from –9 to +5°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid polymer electrolytes based on amorphous polyether-urethane networks combined with lithium or sodium salts and a low molecular weight cosolvent (plasticizer) have been investigated in our laboratories for several years. Conductivity enhancements of up to two orders of magnitude can be obtained whilst still retaining solid elastomeric properties. In order to understand the effects of the plasticizers and their mechanism of conductivity enhancement, multinuclear NMR has been employed to investigate ionic structure in polymer electrolyte systems containing NaCF3SO3, LiCF3SO3 and LiClO3 salts.

With increasing dimethyl formamide (DMF) and propylene carbonate (PC) concentration the increasing cation chemical shift with fixed salt concentration indicates a decreasing anion-cation association consistent with an increased number of charge carriers. 13C chemical shift data for the same systems suggests that whilst DMF also decreases cation-polymer interactions, PC does the opposite, presumably by shielding cation-anion interactions. Temperature dependent 7Li spin-lattice relaxation times indicate the expected increase in ionic mobility upon plasticization with a shift of the T1 minimum to lower temperatures. The magnitude of T1 at the minimum increases upon addition of DMF whereas there is a slight decrease when PC is added. This also supports the suggestion that the DMF preferentially solvates the cation whereas the action of PC is limited to coulomb screening, hence freeing the anion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new cobalt(ii) complexes, [Co(L12)2](BF4)2 (1), [Co(L14)2](BF4)2·H2O (2) and [Co(L16)2](BF4)2·H2O (3), where L12-16 are N3-Schiff bases appended with linear C12-16 carbon chains at the nitrogen atoms, were obtained in good yields by facile one-pot reactions. The single crystal X-ray structure of complex 1 shows a tetragonally compressed CoN6 coordination geometry. The melting temperatures of 1-3 were lower than 373 K, while their decomposition temperatures were above 473 K. All complexes have high-spin Co(ii) centres at 300 K and exhibit a columnar mesophase above 383 K. Complexes 1 and 3 showed normal thermal spin-crossover behaviour with weak hysteresis loops at about 320 K. Hence, these complexes showed uncoupled phase transitions (class iiia). The values for the Seebeck coefficient (Se) of the cobalt redox couples formed from 1 and 2 were 1.89 ± 0.02 mV K-1 and 1.92 ± 0.08 mV K-1, respectively, identifying them as potential thermoelectrochemical materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.