8 resultados para SPECTROSCOPIC CHARACTERIZATION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectroscopic studies have been performed on zeolite natrolites as a function of the non-framework composition at ambient conditions. This establishes the spectroscopic characterization of the ion-exchanged natrolites in the alkali-metal series both in the as-prepared hydrated (M-NAT-hyd, M = Li, Na, K, Rb, and Cs) and some stable dehydrated forms (M-NAT-deh, M = Rb and Cs). The former series exhibits non-framework cation-size dependent opening of the helical channels to span ca. 21° range in terms of the chain rotation angle, ? (or ca. 45° range in terms of the chain bridging angle, T-O2-T). For these hydrated phases, both IR and Raman spectra reveal that the degree of the red-shifts in the frequencies of the helical 8-ring channel as well as the 4-ring unit is proportional to the ionic radius of the non-framework cations. Linear fits to the data show negative slopes of -55.7 from Raman and -18.3 from IR in the 8-ring frequencies and ionic radius relationship. The spectroscopic data are also used to identify the modes of the dehydration-induced "collapse" of the helical 8-ring channels as observed in the stable anhydrous Rb-NAT-deh and Cs-NAT-deh. In addition, we demonstrate that the spectroscopic data in the hydrated series can be used to distinguish different water arrangements along the helical channels based on the frequency shifts in the H-O-H bending band and the changes in the O-H stretching vibration modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports a preliminary exploration of the potential of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P6,6,6,14M3PPh) for use as a conversion coating agent for corrosion protection of magnesium alloy AZ31. Results obtained for the as received IL did not indicate any measureable improvement in protection. However, when the IL was allowed to reach equilibrium/saturation with moisture from the atmosphere, treatment with this ‘wet’ solution resulted in a substantial improvement in corrosion resistance. Preliminary electrochemical, optical, and spectroscopic characterization of the film will be presented along with a possible mechanism for film formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization by multinuclear NMR spectroscopy of the diorganotin dihalides (Me3SiCH2)2SnX2 (1, X = Cl; 2, X = Br), the diorganotin dichloride water adduct (Me3SiCH2)2SnCl2·H2O (1a), the dimeric tetraorganodistannoxanes [(Me3SiCH2)2(X)SnOSn(Y)(CH2SiMe3)2]2 (3, X = Y = Cl; 4, X = Br, Y = OH; 5, X = Br, Y = F; 6, X = Y = OH; 8, X = Cl, Y = OH), and the molecular diorganotin oxide cyclo-[(Me3SiCH2)2SnO]3 (7) are reported. The structures in the solid state of compounds 1a, 3, 6, and 7 were determined by single-crystal X-ray analysis. In toluene solution, the hydroxy-substituted tetraorganodistannoxane 6 is in equilibrium with the diorganotin oxide 7 and water. The eight-membered diorganotin oxide cyclo-[(Me3SiCH2)2SnO]4 (7a) is proposed to be involved in this equilibrium. On the basis of the results of this and previous works, a general hydrolysis pathway is developed for diorganotin dichlorides containing reasonably bulky substituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes) where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules, albeit with generally lower affinity than FA. The significance of these lower affinity interactions with exogenous compounds is not known. In this manuscript, we describe further characterization of drug-rat I-FABP binding interactions using a thermal-shift assay. A structural explanation of the observed affinity of rat I-FABP for different drugs based on spectroscopic data and modeling experiments is presented. In addition, immunocytochemistry has been used to probe the expression of I-FABP in a cell culture model reflective of the absorptive cells of the small intestine. Taken together, these data suggest a possible role for I-FABP in the disposition of some lipophilic drugs within the enterocyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectroscopic techniques are widely used in forensic laboratories for quantitative and qualitative analysis. This artictle provides an overview of the spectroscopic techniques most commonly encountered in forensic laboratories. Infrared spectroscopy, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy energy dispersive X-ray spectroscopy, and nuclear magnetic resonance spectroscopy are used mainly for identification or characterization of substances. Visible and ultraviolet spectroscopy, atomic absorption spectroscopy and atomic emission spectroscopy are used mainly for measurement of substances or elements. Some techniques can be used for both identification and measurement. Related techniques such as molecular fluorescence, chemiluminescence and synchrotron techniques are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.