15 resultados para SINGLE-POLYMER

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wool and alpaca fibers were coated with polypyrrole by vapor-phase polymerisation method. The changes in frictional and tensile properties of the single fibers upon coating with the conductive polymer are presented. Coating a thin layer of polypyrrole on the alpaca and wool fibers results in a significant reduction in the fiber coefficient of friction, as the conducting polymer layer smooths the protruding edges of the fiber scales. It also reduces the directional friction effect of the fibers. Depending on the type of fiber, the coating may slightly enhance the tensile properties of the coated fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermosetting polymer blends of poly(ethylene oxide) (PEO) and bisphenol-A-type epoxy resin (ER) were prepared using 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) as curing agent. The miscibility and crystallization behavior of MCDEA-cured ER/PEO blends were investigated by differential scanning calorimetry (DSC). The existence of a single composition-dependent glass transition temperature (Tg) indicates that PEO is completely miscible with MCDEA-cured ER in the melt and in the amorphous state over the entire composition range. Fourier-transform infrared (FTIR) investigations indicated hydrogen-bonding interaction between the hydroxyl groups of MCDEA-cured ER and the ether oxygens of PEO in the blends, which is an important driving force for the miscibility of the blends. The average strength of the hydrogen bond in the cured ER/PEO blends is higher than in the pure MCDEA-cured ER. Crystallization kinetics of PEO from the melt is strongly influenced by the blend composition and the crystallization temperature. At high conversion, the time dependence of the relative degree of crystallinity deviated from the Avrami equation. The addition of a non-crystallizable ER component into PEO causes a depression of both the overall crystallization rate and the melting temperature. The surface free energy of folding σe displays a minimum with variation of composition. The spherulitic morphology of PEO in the ER/PEO blends exhibits typical characteristics of miscible crystalline/amorphous blends, and the PEO spherulites in the blends are always completely volume-filling. Real-time small-angle X-ray scattering (SAXS) experiments reveal that the long period L increases drastically with increasing ER content at the same temperatures. The amorphous cured ER component segregates interlamellarly during the crystallization process of PEO because of the low chain mobility of the cured ER. A model describing the semicrystalline morphology of MCDEA-cured ER/PEO blends is proposed based on the SAXS results. The semicrystalline morphology is a stack of crystalline lamellae; the amorphous fraction of PEO, the branched ER chains and imperfect ER network are located between PEO lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of the dimethylsilylmethyl-substituted tetraorganotin derivative CH2[CH2Sn(Ph2)CH2Si(H)Me2]2 (1) and CH2[CH2Sn(Ph2)CH2Si(i-PrO)Me2]2 (3), respectively, with mercuric chloride afforded the novel silicon- and tin-containing 10- and 20-membered rings cyclo-CH2[CH2Sn(Cl2)CH2Si(Me2)]2O (4) and cyclo-CH2[CH2Sn(Cl2)CH2Si(Me2)OSi(Me2)CH2Sn(Cl2)CH2]2CH2 (5). Both compounds 4 and 5 can be converted into the soluble Lewis acidic polymer poly-[Si(Me2)CH2Sn(Cl2)(CH2)3Sn(Cl2)CH2Si(Me2)O] (8). 119Sn NMR studies indicate that 4 acts as a bidentate Lewis acid toward chloride ions, exclusively forming the 1:1 complex [cyclo-CH2[CH2Sn(Cl2)CH2Si(Me2)]2O·Cl]-[(Ph3P)2N]+ (7). The molecular structures as determined by single-crystal X-ray diffraction analysis of 4 and 7 are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the preparation of wavelike surface patterns with characteristic wavelengths on thin bilayers of poly(methyl methacrylate) on azobenzene liquid crystalline polymer films (LCP/PMMA) by irradiation of a single polarized pulsed laser beam. The formation of such patterns was influenced by the thickness of the upper layer and the laser fluence. We were also able to guide the wavelike pattern to have a specific orientation by placing an elastic polydimethylsiloxane (PDMS) mold on the surface of bilayer film prior to laser irradiation. Moreover, the property of the laser irradiation, that is, the selectivity through mask-projection systems, allowed us fabricating complicated micropattems for novel microdevices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon black (CB) fillers were used to study the feasibility of achieving multiple percolation using an immiscible (polar) polymer blend matrix. By tailoring the morphology of the insulating dual phase matrix it has been shown that the percolation threshold (Фc) can be reduced over single-phase matrices. Cocontinuity in the polymer matrix is important in reducing Фc by either preferentially isolating the conducting filler at the interface of the two phases or within one particular continuous phase of the matrix thereby forming a continuous conducting network within a continuous network (multiple percolation). Actual melt processing time has been found to influence the dispersion of the fillers and hence Фc. Polarity of the matrix as well as the processing method has also been found to influence the dispersion of the filler within the host polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(2-acrylamido-2-methyl-propane-1-sulphonic acid), poly(AMPS), has been ion exchanged with lithium and sodium to form alkali metal ion conducting polyelectrolytes. In the pure form these materials are rigid and would thus show limited conductivity. However addition of water or dimethylsulphoxide, as plasticizers, increases the conductivity by several orders or magnitude. The thermal analysis and NMR relaxation studies of these systems suggest that the increase in conductivity is as a direct result of increased ion mobility although the FTIR evidence still suggests significant ion association consistent with weak electrolytes. Although the Tg's of the sodium form of the polymer were higher, this system displayed higher conductivities than lithium which can be explained by a greater degree of ion dissociation and hence a larger number of charge carriers in the case of sodium poly(AMPS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations implementing both Monte Carlo (MC) and molecular dynamics (MD) techniques were used to explore various aspects of polymer electrolytes. Evidence is presented to support the conclusion that collective behavior of ions determines much of the behavior of these complex materials. Simple theories attributing ion transport to either single ions or clusters of three ions are inadequate to explain ion transport behavior; in particular, the Nernst-Einstein relation commonly used to discuss polymer electrolytes is almost certainly quantitatively inappropriate for these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the effects of an atmospheric pressure plasma (APP) pre-treatment on the shrink resistance of wool fabric treated subsequently, by the pad/dry method, with an aqueous emulsion of the amino-functional polydimethylsiloxane, SM 8709. Optimal shrink resistance (with no impairment of fabric handle) was obtained after a low-level plasma treatment (1-3 s exposure time), using 5% of the polymer emulsion. Higher levels of silicone polymer could be used to achieve shrink resistance in the absence of a plasma pre-treatment, but the fabric handle would be adversely affected. X-ray photoelectron spectroscopy (XPS) studies showed that the bulk of the covalently bound surface lipid layer was removed after a plasma exposure time of 30 s. For treatment times of 3 s or less, however, the removal was incomplete, suggesting that optimum shrink resistance (after treatment with the silicone polymer) was associated with the modification of the surface layer rather than its complete destruction. Scanning electron micrographs (SEMs) revealed that the plasma pre-treatment did not lead to any physical modifications (such as smoothening of the scale edges), even for long exposure times, and had no significant impact on the extent or nature of the inter-fibre bonding of the polymer. Confocal microscopy showed uniform spread of polymer on single fibres. It is concluded that the main impact of the plasma pre-treatment was to enhance the distribution of polymer both on and between fibres and to improve adhesion of polymer to the fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A special Micro-Nano fiberous composite structure composed of nano- and micro-scale fiber of Polycaprolactone (PCL) and Gelatin produced by using single nozzle electrospinning instrument. By controlling the solution (polymer concentration and polymer composition percent) and processing parameters of electrospinning (feed rate and electrostatic field), different portion of nano and micro fibers in the structure is achieved. This method can result a one-stage method of fabrication of Micro-Nano fiberous composite structure instead of previously used twostage process or using additional facility to produce structure near-similar to this composite structure. The resulting materials finely mingle nano- and micro fibers together, rather than simply juxtaposing them, as is commonly found in the literature. The results obtained from SEM, Flow Porosimetry, and DMA led the authors to confirm that the structure has very versatile and improved properties for many applications like cell culture scaffolds. These favourable mechanical and structural properties can provide easier opening of spaces for cell penetration to deeper levels of the scaffold and withstand to tensions during to clinical handling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule-precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pH-sensitive, mechanically strong and thermally stable graphene/poly (acrylic acid) (graphene/PAA) hydrogel was prepared via reversible addition fragmentation transfer (RAFT) polymerizations in the presence of a cross-linking agent. The RAFT agent was covalently coupled onto graphene basal planes via an esterification reaction, with benzoic acid functionalities pre-attached on graphene with its aryl diazonium salt precursor. AFM and SEM analysis revealed the successful preparation of single layered graphene sheets and graphene/polymer hydrogels with pH controlled porous structures. Attenuated total reflection infrared (ATR-IR) and thermogravimetric analyzer (TGA) verified the successful stepwise preparation of graphene/PAA hydrogel. This graphene/PAA hydrogel was pH-sensitive and more mechanically elastic than the PAA hydrogel prepared without graphene. The pH sensitivity of the hydrogel was further utilized for controlled drug release. Doxorubicin was chosen as a model drug and loaded into the hydrogels. The drug loading and release experiment indicated that this hydrogel can be used to efficiently control drug release in the intestine environment (pH = 7.4), better than release in a more acidic environment.© 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose here a novel liquid dendrimer-based single ion conductor as a potential alternative to conventional molecular liquid solvent-salt solutions in rechargeable batteries, sensors and actuators. A specific change from ester (-COOR) to cyano (-CN) terminated peripheral groups in generation-one poly(propyl ether imine) (G1-PETIM)-lithium salt complexes results in a remarkable switchover from a high cation (tLi+ = 0.9 for -COOR) to a high anion (tPF6- = 0.8 for -CN) transference number. This observed switchover draws an interesting analogy with the concept of heterogeneous doping, applied successfully to account for similar changes in ionic conductivity arising out of dispersion of insulator particle inclusions in weak inorganic solid electrolytes. The change in peripheral group simultaneously affects the effective ionic conductivity, with the room temperature ionic conductivity of PETIM-CN (1.9 × 10-5 Ω-1 cm-1) being an order of magnitude higher than PETIM-COOR (1.9 × 10-6 Ω-1 cm-1). Notably, no significant changes are observed in the lithium mobility even following changes in viscosity due to the change in the peripheral group. Changes in the peripheral chemical functionality directly influence the anion mobility, being lower in PETIM-COOR than in PETIM-CN, which ultimately becomes the sole parameter controlling the effective transport and electrochemical properties of the dendrimer electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of processing history and morphology is of particular importance for lithium-ion electrolytes for achieving higher ionic conductivities. In this study, single ion conducting poly (4-lithium styrene sulfonic acid) was synthesized by neutralization reaction from polystyrene sulfonic acid, and the effect of morphology and processing method was studied by comparing pelletized, electrospun and gel samples. The PSSLi gels displayed best ionic conductivity, while the pelletized samples showed the worst ionic conductivity. Although electrospinning led to a free standing electrolyte, the lower amount of solvent phase led to lower ionic conductivity when compared to the PSSLi gel. The ionic conductivity at room temperature improved from 6.6 × 10−5 S/cm to 1.4 × 10−3 S/cm by optimizing the processing methodology and the lithium ion concentration. The results show that PSSLi based single ion conducting lithium (SICL) gels are a promising candidate for lithium ion battery application.