10 resultados para SINGLE-CRYSTALLINE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this investigation, carbon-coated LiFePO4 cathode materials were synthesized with a facile hydrothermal method. The structure and electrochemical properties of the materials were investigated by X-ray diffraction (XRD), Roman, transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), and electrochemical impedance spectroscopy (EIS). By adjusting the mixing concentration of starting materials, a single-crystalline LiFePO4 with an anisotropic rhombus morphology (Space Group: Pmnb No. 62) were successfully synthesized. In addition, the carbon coated on the surface of LiFePO4 material prepared has a lower ID/IG (0.80), which indicates an optimized carbon structure with an increased amount of sp2-type carbon. Electrochemical performance test shows that the carbon-coated LiFePO4 cathode materials have an initial discharge capacity of 146 mAh g−1 at 0.2C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitters hosted by bulk hBN have not been reported to date. In this work, we study the emission properties of hBN crystals in the red spectral range using sub-band-gap optical excitation. Quantum emission from defects is observed at room temperature and characterized in detail. Our results advance the use of hBN in quantum nanophotonics technologies and enhance our fundamental understanding of its optical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to study the strain rate effect on single crystal of aluminum (99.999% purity), aluminum single crystals are fabricated and subjected to uniaxial compression loading at quasi-static and dynamic strain rates, i.e., from 10-4 s-1 to 1000 s-1. The orientation dependence is also investigated with single slip or multi slip. The stress-strain curves of pure Al single crystals along two orientations and at different strain rates are obtained after measuring initial orientation using the Laue Back-Reflection technique. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used to simulate the deformations along two orientations under various strain-rates. The classical and two newly developed single crystal plasticity models are used in the investigation. The simulation results of these models are compared to experimental results in order to study their abilities to predict finite plastic deformation of single crystalline metal over a wide strain rate range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-scale, high-density, and patterned carbon nanotubes (CNTs) on both pure Si and quartz (SiO2) substrates have been produced using different approaches. The CNTs were synthesized by pyrolysis of the ball-milled iron phthalocyanine (FePc) in a tube furnace under a Ar-5% H2 gas flow. Because patterned CNTs are difficult to grow directly on smooth and perfect single-crystalline Si wafer surface, mechanical scratches were created to help the selective deposition and growth of CNTs on the scratched areas. This simple process does not require pre-deposition of any metal catalysts. For SiO2 substrates, which can be readily covered by a CNT film, patterned CNTs are produced using a TEM grid as mask to cover the areas where CNTs are not needed. The growth temperature and vapor density have strong influence on the patterned CNT formation. The scratch areas with a special structure and a higher surface energy help the selective nucleation of CNTs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, MnCr2O4 spinel single-crystalline nanowires were simply synthesized by heating commercial stainless steel foil (Cr0.19Fe0.70Ni0.11) under a reducing atmosphere. The nanowires have an average diameter of 50 nm and a length of about 10 μm. Some nanowires are sheathed with a thin layer of amorphous silicon oxide. Photoluminescence measurements revealed that the nanowires exhibit an emission band at 435 nm, which resulted from the oxygen-related defects in the silicon oxide sheath. It was found that the reducing atmosphere plays a key role for the nanowire growth. In the reducing atmosphere, the Mn and Cr elements in the stainless steel could be selectively oxidized because of their higher affinity for oxygen than the Fe and Ni elements. The Fe and Ni elements in the stainless steel, however, acted as the catalyst for the vapor–liquid–solid (VLS) growth of the MnCr2O4 nanowires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long and straight β-SiC nanowires are synthesized via the direct current arc discharge method with a mixture of silicon, graphite and silicon dioxide as the precursor. Detailed investigations with x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Raman scattering spectroscopy, transmission electron microscopy and selected area electron diffraction confirm that the β-SiC nanowires, which are about 100–200 nm in stem diameter and 10–20 µm in length, consist of a solid single-crystalline core along the (1 1 1) direction wrapped with an amorphous SiOx layer. A broad photoluminescence emission peak with a maximum at about 336 nm is observed at room temperature. A direct current arc plasma-assisted self-catalytic vapour–liquid–solid process is proposed as the growth mechanism of the β-SiC nanowires. This synthesis technique is capable of producing SiC nanowires free of metal contamination with a preferential growth direction and a high aspect ratio, without the designed addition of transition metals as catalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hexagonal V0.13Mo0.87O2.935 nanowires were hydrothermally synthesized at 220 °C for the first time. X-ray diffraction and field-emission scanning electron microscopy were utilized to characterize the phase and morphology of the nanowires, respectively. Transmission electron microscopy and selected area electron diffraction indicate that the nanowires are single crystalline, growing along the [001] direction. Interestingly, the nanowires easily become amorphous under the electron irradiation. The comparative hydrothermal experiments show that the molar ratio between the starting reagents of Mo and NH4VO3 plays a vital role in the anisotropic growth of nanowires. The photoluminescence measurement demonstrates that these nanowires exhibit two strong emission peaks at 420 and 438 nm, which are probably related to the intrinsic oxygen vacancies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel TiO2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO2 nanorods on TiO2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO2 nanorods had lower dye loading than TiO2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO2 nanorods received less resistance than that in TiO2 nanoparticle aggregation. By just applying a thin layer of TiO2 nanorods on TiO2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO2 nanoparticle layer covered with 3 μm thick TiO2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.