17 resultados para SINGLE NUCLEOTIDE POLYMORPHISMS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasingly popular and promising way for complex disease diagnosis is to employ artificial neural networks (ANN). Single nucleotide polymorphisms (SNP) data from individuals is used as the inputs of ANN to find out specific SNP patterns related to certain disease. Due to the large number of SNPs, it is crucial to select optimal SNP subset and their combinations so that the inputs of ANN can be reduced. With this observation in mind, a hybrid approach - a combination of genetic algorithms (GA) and ANN (called GANN) is used to automatically determine optimal SNP set and optimize the structure of ANN. The proposed GANN algorithm is evaluated by using both a synthetic dataset and a real SNP dataset of a complex disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (CYP2B6) is an important enzyme that metabolizes more than eight compounds and about 3.0% of therapeutic drugs. The genetic polymorphisms of CYP2B6 have earlier been studied in Caucasian, Japanese and Korean, but the data are lacking for Han Chinese. The aim of this study was to investigate the frequencies of allelic variants of CYP2B6 in healthy Han Chinese and compare with those in other ethnic groups reported in the literature. Polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) method was used to test the five common non-synonymous single nucleotide polymorphisms (SNPs) of CYP2B6 gene, namely, 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T in unrelated healthy Han Chinese (n = 193). The study demonstrated that the frequencies of 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T SNPs in Han Chinese were 0.03, 0.21, 0, 0.28 and 0.003, respectively. The frequencies of all five SNPs tested in female were higher than those in male, but the statistical difference was insignificant (P > 0.05). Compared to the data reported in the literature, the frequencies of common CYP2B6 allelic variants in Chinese are similar to those of other Asian populations including Japanese and Korean, but markedly different from those in Caucasians. These results indicate the presence of marked ethnic difference in CYP2B6 SNP frequencies between Chinese and Caucasian. Further studies are required to explore the impact of these SNPs of CYP2B6 gene on the clinical response (efficacy and toxicity) to drugs that are substrates for CYP2B6 in patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BEACON gene was initially identified using the differential display polymerase chain reaction on hypothalamic mRNA samples collected from lean and obese Psammomys obesus, a polygenic animal model of obesity. Hypothalamic BEACON gene expression was positively correlated with percentage of body fat, and intracerebroventricular infusion of the Beacon protein resulted in a dose-dependent increase in food intake and body weight. The human homolog of BEACON, UBL5, is located on chromosome 19p in a region previously linked to quantitative traits related to obesity. Our previous studies showed a statistically significant association between UBL5 sequence variation and several obesity- and diabetes-related quantitative physiological measures in Asian Indian and Micronesian cohorts. Here we undertake a replication study in a Mexican American cohort where the original linkage signal was first detected. We exhaustively resequenced the complete gene plus the putative promoter region for genetic variation in 55 individuals and identified five single nucleotide polymorphisms (SNPs), one of which was novel. These SNPs were genotyped in a Mexican American cohort of 900 individuals from 40 families. Using a quantitative trait linkage disequilibrium test, we found significant associations between UBL5 genetic variants and waist-to-hip ratio (p = 0.027), and the circulating concentrations of insulin (p = 0.018) and total cholesterol (p = 0.023) in fasted individuals. These data are consistent with our earlier published studies and further support a functional role for the UBL5 gene in influencing physiological traits that underpin the development of metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2 > 0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P < 10-7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P < 0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in psychiatric genetics has been slow despite evidence of high heritability for most mental disorders. We argue that greater use of early detectable intermediate traits (endophenotypes) with the highest likely aetiological significance to depression, rather than complex clinical phenotypes, would be advantageous. Longitudinal data from the Western Australian Pregnancy Cohort (Raine) Study were used to identify an early life behavioural endophenotype for atypical hypothalamic-pituitaryadrenocortical function in adolescence, a neurobiological indicator of anxiety and depression. A set of descriptors representing rigid and reactive behaviour at age 1 year discriminated those in the top 20% of the free salivary cortisol exposure at age 17 years. Genetic association analysis revealed a male-sensitive effect to variation in three specific single nucleotide polymorphisms within selected genes underpinning the overall stress response. Furthermore, support for a polygenic effect on stress-related behaviour in childhood is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent studies have suggested that oxytocin affects social cognition and behavior mediated by the oxytocin receptor (OXTR) in amygdala in humans as well as in experimental animals. Genetic studies have revealed a link between the OXTR gene and the susceptibility to autism spectrum disorders (ASD), especially in the social dysfunctional feature of ASD.

Methods: We examined the relationship between amygdala volume measured with manual tracing methodology and seven single nucleotide polymorphisms and one haplotype-block in OXTR, which were previously reported to be associated with ASD, in 208 socially intact Japanese adults with no neuropsychiatric history or current diagnosis.

Results: The rs2254298A allele of OXTR was significantly associated with larger bilateral amygdala volume. The rs2254298A allele effect on amygdala volume varied in proportion to the dose of this allele. The larger the number of rs2254298A alleles an individual had, the larger their amygdala volume. Such an association was not observed with hippocampal volume or with global brain volumes, including whole gray, white matter, and cerebrospinal-fluid space. Furthermore, two three–single nucleotide polymorphism haplotypes, including rs2254298G allele, showed significant associations with the smaller bilateral amygdala volume.

Conclusions: The present results suggest that OXTR might be associated with the susceptibility to ASD, especially in its aspects of social interaction and communication mediated by a modulation of amygdala development, one of the most distributed brain regions with high density of OXTR. Furthermore, amygdala volume measured with magnetic resonance imaging could be a useful intermediate phenotype to uncover the complex link between OXTR and social dysfunction in ASD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species status of H. armigera has been doubted, due to its wide distribution and plant host range across the Old World. This study explores the global genetic diversity of H. armigera and its evolutionary relationship to H zea.

Results
We obtained partial (511 bp) mitochondrial DNA (mtDNA) Cytochrome Oxidase-I (COI) sequences for 249 individuals of H. armigera sampled from Australia, Burkina Faso, Uganda, China, India and Pakistan which were associated with various host plants. Single nucleotide polymorphisms (SNPs) within the partial COI gene differentiated H. armigera populations into 33 mtDNA haplotypes. Shared haplotypes between continents, low F-statistic values and low nucleotide diversity between countries (0.0017 – 0.0038) suggests high mobility in this pest. Phylogenetic analysis of four major Helicoverpa pest species indicates that H. punctigera is basal to H. assulta, which is in turn basal to H. armigera and H. zea. Samples from North and South America suggest that H. zea is also a single species across its distribution. Our data reveal short genetic distances between H. armigera and H. zea which seem to have been established via a founder event from H. armigera stock at around 1.5 million years ago.

Conclusion
Our mitochondrial DNA sequence data supports the single species status of H. armigera across Africa, Asia and Australia. The evidence for inter-continental gene flow observed in this study is consistent with published evidence of the capacity of this species to migrate over long distances. The finding of high genetic similarity between Old World H. armigera and New World H. zea emphasises the need to consider work on both pests when building pest management strategies for either.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ATP-binding cassette family of transporter proteins, subfamily B (MDR/TAP), member 1 (ABCB1) (P-glycoprotein) transporter is a key component of the blood–brain barrier. Many antidepressants are subject to ABCB1 efflux. Functional polymorphisms of ABCB1 may influence central nervous system bioavailability of antidepressants subject to efflux. Single-nucleotide polymorphisms (SNPs) at rs1045642 (C3435T) of ABCB1 have been associated with efflux pump efficiency. This may explain part of the interindividual variation in antidepressant dose needed to remit. Individuals (N=113) with DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) major depressive disorder (MDD) were treated with escitalopram (ESC) or venlafaxine (VEN) over 8 weeks. The17-item Hamilton Depression Rating Scale was assessed serially, blind to genotype. SNP rs1045642 of ABCB1 along with two SNPs previously reported to be in linkage disequilibrium with it (rs2032582 and rs1128503) were genotyped. Demographic features, clinical features, P450 metabolizer status and 5-HTTLPR (serotonin-transporter-linked promoter region) genotype were controlled for. Carriers of rs1045642 TT needed on average 11 mg of ESC to remit, whereas TC and CC carriers required 24 and 19 mg, respectively (P=0.0001). This equates to a 2.0- (95% confidence interval=1.5–3.4; P<0.001) fold greater ESC dose needed to remit for C carriers compared with TT carriers at rs1045642. Of VEN-treated subjects carrying TT genotype at rs1045642, 73.3% remitted compared with 12.5% for CC genotype (odds ratio=6.69; 95% confidence interval=1.72–25.9, P=0.006). These data suggest that antidepressant dose needed to remit can be predicted by an ABCB1 SNP. This has the potential clinical translation implications for dose selection and remission from MDD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current single-locus-based analyses and candidate disease gene prediction methodologies used in genome-wide association studies (GWAS) do not capitalize on the wealth of the underlying genetic data, nor functional data available from molecular biology. Here, we analyzed GWAS data from the Wellcome Trust Case Control Consortium (WTCCC) on coronary artery disease (CAD). Gentrepid uses a multiple-locus-based approach, drawing on protein pathway- or domain-based data to make predictions. Known disease genes may be used as additional information (seeded method) or predictions can be based entirely on GWAS single nucleotide polymorphisms (SNPs) (ab initio method). We looked in detail at specific predictions made by Gentrepid for CAD and compared these with known genetic data and the scientific literature. Gentrepid was able to extract known disease genes from the candidate search space and predict plausible novel disease genes from both known and novel WTCCC-implicated loci. The disease gene candidates are consistent with known biological information. The results demonstrate that this computational approach is feasible and a valuable discovery tool for geneticists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new properties and fabrication methods for gold nanostructures, especially gold nanowires (GNWs), and recent developments for their use in optical and electrochemical sensing tools, such as surface enhanced Raman spectroscopy (SERS). © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We aimed to investigate the relationship between genetic and environmental exposure and vitamin D status at age one, stratified by ethnicity. This study included 563 12-month-old infants in the HealthNuts population-based study. DNA from participants' blood samples was genotyped using Sequenom MassARRAY MALDI-TOF system on 28 single nucleotide polymorphisms (SNPs) in six genes. Using logistic regression, we examined associations between environmental exposure and SNPs in vitamin D pathway and filaggrin genes and vitamin D insufficiency (VDI). VDI, defined as serum 25-hydroxyvitamin D3(25(OH)D3) level ≤50 nmol/L, was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Infants were stratified by ethnicity determined by parent's country of birth. Infants formula fed at 12 months were associated with reduced odds of VDI compared to infants with no current formula use at 12 months. This association differed by ethnicity (P;bsubesub;= 0.01). The odds ratio (OR) of VDI was 0.29 for Caucasian infants (95% CI, 0.18-0.47) and 0.04 for Asian infants (95% CI, 0.006-0.23). Maternal vitamin D supplementation during pregnancy and/or breastfeeding were associated with increased odds of infants being VDI (OR, 2.39; 95% CI, 1.11-5.18 and OR, 2.5; 95% CI, 1.20-5.24 respectively). Presence of a minor allele for any GC SNP (rs17467825, rs1155563, rs2282679, rs3755967, rs4588, rs7041) was associated with increased odds of VDI. Caucasian infants homozygous (AA) for rs4588 had an OR of 2.49 of being associated with VDI (95% CI, 1.19-5.18). In a country without routine infant vitamin D supplementation or food chain fortification, formula use is strongly associated with a reduced risk of VDI regardless of ethnicity. There was borderline significance for an association between filaggrin mutations and VDI. However, polymorphisms in vitamin D pathway related genes were associated with increased likelihood of being VDI in infancy. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Very little is known about mechanisms of idiosyncratic sensitivity to the damaging effects of mercury (Hg); however, there is likely a genetic component. The aim of the present study was to search for genetic variation in genes thought to be involved in Hg metabolism and transport in a group of individuals identified as having elevated Hg sensitivity compared to a normal control group. MATERIALS AND METHODS: Survivors of pink disease (PD; infantile acrodynia) are a population of clinically identifiable individuals who are Hg sensitive. In the present study, single nucleotide polymorphisms in genes thought to be involved in Hg transport and metabolism were compared across two groups: (i) PD survivors (n = 25); and (ii) age- and sex-matched healthy controls (n = 25). RESULTS: Analyses revealed significant differences between groups in genotype frequencies for rs662 in the gene encoding paraoxanase 1 (PON1) and rs1801131 in the gene encoding methylenetetrahydrofolate reductase (MTHFR). CONCLUSIONS: We have identified two genetic polymorphisms associated with increased sensitivity to Hg. Genetic variation in MTHFR and PON1 significantly differentiated a group formerly diagnosed with PD (a condition of Hg hypersensitivity) with age- and gender-matched healthy controls.