12 resultados para SILOXANE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bis(arylene silanes) p,p'-HMe2SiC6H4EMe2C6H4SiMe2H (E = C (10), Si (11), Ge (12), Sn(13)) were prepared by the in situ Grignard reaction of p,p'-BrC6H4CMe2C6H4Br, Mg turnings, and HSiMe2Cl (for 10) and the Grignard reaction using p-HMe2SiC6H4Br, Mg turnings, and Me2ECl2 (E = Si for 11, Ge for 12, Sn for 13). The oxidation of 10-13 using Pearlman's catalyst, Pd(OH)2/C, in aqueous THF provided the bis(arylene silanols) p,p'-HOMe2SiC6H4EMe2C6H4SiMe2OH (E = C (14), Si (15), Ge (16), Sn(17)). The HCl-catalyzed condensation of 14-17 in highly diluted solutions of acetone/water afforded the siloxane-bridged paracyclophanes cyclo-[p,p'-Me2SiC6H4EMe2C6H4SiMe2O]2 (6-9) that incorporate the group 14 elements E = C, Si, Ge, and Sn. Compounds 6-17 were investigated by multinuclear solution and solid-state NMR spectroscopy and 6 and 9 also by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the self-assembled microphase separated morphologies that are obtained in bulk, by the complexation of a semicrystalline poly(ε-caprolactone-dimethyl siloxane-ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer and a homopolymer, poly(hydroxyether of bisphenol A) (PH) in tetrahydrofuran (THF). In these blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, the homopolymer interacts with PCL blocks through hydrogen bonding interactions. The crystallization, microphase separation and crystalline structures of a triblock copolymer/homopolymer blends were investigated. The phase behavior of the complexes was investigated using small-angle X-ray scattering and transmission electron microscopy. At low PH concentrations, PCL interacts relatively weakly with PH, whereas in complexes containing more than 50 wt% PH, the PCL block interacts significantly with PH, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the lamellar morphology of neat PCL-PDMS-PCL triblock copolymer changes into disordered structures at 40-60 wt% PH. Spherical microdomains were obtained in the order of 40-50 nm in complexes with 80 wt% PH. At this concentration, the complexes show a completely homogenous phase of PH/PCL, with phase-separated spherical PDMS domains. The formation of these nanostructures and changes in morphology depends on the strength of hydrogen bonding between PH/PCL blocks and also the phase separated PDMS blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The six-, eight- and twelve-membered cyclo-siloxanes, cyclo-[R2SiOSi(Ot-Bu)2O]2 (R = Me (1), Ph (2)), cyclo-(t-BuO)2Si(OSiR2)2O (R = Me (3), Ph (4)), cyclo-R2Si[OSi(Ot-Bu)2]2O (R = Me (5), Ph (6)) and cyclo-[(t-BuO)2Si(OSiMe2)2O]2 (3a) were synthesized in high yields by the reaction of (t-BuO)2Si(OH)2 and [(t-BuO)2SiOH]2O with R2SiCl2 and (R2SiCl)2O (R = Me, Ph). Compounds 1 - 6 were characterized by solution and solid-state 29Si NMR spectroscopy, electrospray mass spectrometry and osmometric molecular weight determination. The molecular structure of 4 has been determined by single crystal X-ray diffraction and features a six-membered cyclo-siloxane ring that is essentially planar. The reduction of 1 - 6 with i-Bu2AlH (DIBAL-H) led to the formation of the metastable aluminosiloxane (t-BuO)2Si(OAli-Bu2)2 (7) along with Me2SiH2 and Ph2SiH2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new fabric with potential in medical textiles has been developed by application of a surface coating on wool using pulsed plasma polymerization of HMDSO. This coating enabled a controllable MVTR and surface adhesion. MVTR in the range recommended for optimum wound healing was obtained by varying frequency, monomer pressure and deposition time. Lower surface adhesion was achieved. Peeling tests, contact angle measurements, SPM force curves and ATR FT-IR were used to characterize the surfaces for both wool and a PE model substrate. All these results were consistent with a decrease in surface energy after PP-HMDSO treatment. ATR FT-IR results showed a siloxane film with less organic Si(CH3)n groups and more SiOSi cross-links.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological fluids such as blood, proteins and DNA solutiosn moving within fluidic channels can potentially be exposed to high level of shear, extension or mixed stress, either in vitro such as industrial processing of blood products or in vivo such as ocurrs in some pathological conditions. This exposure to a high level of strain can trigger some reactions. In most of the cases the nature of the flow is mixed with shear and extensional components. The ability ot isolate the effects of each component is critical in order to understand the mechanisms behind the reactions and potentially prevent them. Applying hydrodynamic flow focusing, we present in this investigation the characterization of microchannels that allow study of the regions of high shear or high extension strain rate. Micro channels were fabricated in polydimethyl siloxane (PDMS)  using standard soft-lithography techniques with a photolithographically patterned mold. Characterization of the regions with high shear and high extension strain rate is presented. Computational Fluid Dynamics (CFD) simulations in three dimensions have been carried out to gain more detailed local flow information, and the results have been validated experimentally. A comparison between the numerical models and experiment and is presented. The advantages of microfluidic flow focusing in the study  of the effects of shear and extension strain rates for biological fluids are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly ordered poly(dimethyl siloxane)-poly(glycidyl methacrylate) (PDMS-PGMA) reactive diblock copolymer was synthesized and used to modify bisphenol A-type epoxy resin (ER). The PDMS-PGMA block copolymer consisted of epoxy-miscible PGMA blocks and an epoxy-immiscible PDMS block. The PGMA reactive block of the block copolymer formed covalent bonds with cured epoxy and was involved in the network formation, and the PDMS block phase separated to give different ordered and disordered nanostructures at different blend compositions. The solvent cast PDMS-PGMA diblock copolymer showed ordered hexagonal cylindrical morphology. A highly ordered morphology consisting of hexagonal cylinders inside the lamellar morphology was observed in the cured PDMS-PGMA block copolymer. In the cured ER/PDMS-PGMA blends, a variety of morphologies including lamellar, cubic and worm-like and spherical nanostructures were detected depending on the blend composition. Moreover, the addition of this reactive diblock copolymer significantly increases the hydrophobicity and the glass transition temperature. It also improves the tensile strength and tensile ductility of the nanostructured thermosets at low diblock copolymer contents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present for the first time a real-time small-angle X-ray scattering (SAXS) study of the structural transition of fluid microemulsion to solid polymerized material in a silicone polymerizable microemulsion system. A reactive methacrylate-terminated siloxane macromonomer (MTSM, Mn ∼ 1000 g/mol) was synthesized and used for microemulsion formulations comprising MTSM (oil phase), water, and a mixture of nonionic surfactant (Teric G9A8) with isopropanol. In situ synchrotron SAXS was used to investigate time-dependent nanostructure evolution during the polymerization reaction, which was directly initiated by X-ray radiation. The SAXS data were analyzed using both the Teubner-Strey model and the core-shell model. The results obtained by the Teubner-Strey model showed that the domain size (d) decreased while the correlation length (ξ) increased upon polymerization. The analysis in terms of the core-shell model displayed that adding water to the precursor microemulsion caused the water droplets to start swelling, which resulted in the discontinuity of water in oil microemulsion. There exhibited large differences in morphologies of polymerized materials from the microemulsion formulations with different water and surfactant contents. The core and shell sizes of water droplets decreased during the course of polymerization when there was 15 wt % or more water in the microemulsion formulation; the polymerized material thus exhibited increasingly discrete granular morphology. When there was 10 wt % or less water content in the precursor microemulsion, the rearrangement of water domains could be minimized during the course of polymerization and transparent polymerized material was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PurSil®AL20 (PUS), a copolymer of 4,4'-dicyclohexylmethane diisocyanate (HMDI), 1,4-butane diol (BD), poly-tetramethylene oxide (PTMO) and poly-dimethyl siloxane (PDMS) was investigated for stability as a vehicle for Docetaxel (DTX) delivery through oesophageal drug eluting stent (DES). On exposure to stability test conditions, it was found that DTX release rate declined at 4 and 40 °C. In order to divulge reasons underlying this, changes in DTX solid state as well as PUS microstructure were followed. It was found that re-crystallization of DTX in PDMS rich regions was reducing the drug release at both 4 °C and 40 °C samples. So far microstructural features have not been correlated with stability and drug release, and in this study we found that at 40 °C increase in microstructural domain sizes and the inter-domain distances (from ∼85 Å to 129 Å) were responsible for hindering the DTX release in addition to DTX re-crystallization.