12 resultados para SEROTONIN RECEPTOR

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha  mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 ± 729 to 6640 ± 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 ± 69–712 ± 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An increase in the concentration of serotonin in the brain has been shown to cause fatigue during exercise in humans and experimental animals. This type of fatigue is referred to as central fatigue and is likely to be mediated by the concentration of serotonin as well as serotonin receptor sensitivity. Serotonin (5-HT) receptor antagonism in humans and experimental animals has been shown to improve endurance performance. A previous report has shown decreased receptor sensitivity in athletes compared to sedentary controls. It is unclear whether this is due to a training adaptation or if individuals are predisposed to enhanced athletic performance due to their inherent decreased receptor sensitivity. The present study investigated changes in 5-HT receptor sensitivity in response to aerobic exercise. Subjects completed 3 × 30 min of stationary cycling at 70% of their peak aerobic power (V̇O2,peak) for 9 weeks. Serotonin receptor sensitivity was assessed indirectly by measuring the neuroendocrine response following administration of a serotonin agonist (buspirone hydrochloride). The neuroendocrine response following administration of a placebo was also investigated in a blind crossover design. A group of sedentary control subjects was also recruited to control for seasonal variations in central receptor sensitivity. The training caused a significant increase in V̇O2,peak (3.1 ± 0.16 to 3.6 ± 0.15 l min−1, P < 0.05) and endurance capacity (93 ± 8 to 168 ± 11 min, P < 0.05), but there was no change (P > 0.05) in the neuroendocrine response in the presence of a serotonin agonist. However, one-quarter of the subjects in the training group demonstrated decreases in receptor sensitivity. These results suggest that despite increases in V̇O2,peak and endurance performance, there was no measurable change in 5-HT receptor sensitivity in the presence of a serotonin agonist. In addition, it is possible that changes in receptor sensitivity may take longer to occur, that the training stimulus used in the present investigation was inadequate and/or that changes occurred in receptor subtypes that were not probed by the agonist used in the present investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current biological approaches to the treatment of depression focus mainly on modification of monoaminergic neurotransmission. New agents targeting these neurotransmitters are under development. Many novel antidepressant targets are however under investigation. These include the neurokinins, glutamate, purinoceptors, opioids and trophic factors. While many of these potential targets are likely to fail clinical development, exciting novel therapeutic options are likely to emerge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abnormalities in the serotonergic signalling system, including the serotonin 1a receptor, have been implicated in the pathogenesis of schizophrenia and bipolar 1 disorder. However, there is no consensus on whether the density of the serotonin 1a receptor and/or the activity of the G-proteins linking the receptor to the intracellular cascade are altered in these disease states. To address these issues, tissue obtained postmortem from four cortical regions was used to measure [3H] 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) binding and 8-OH-DPAT-stimulated guanosine 5′-[γ-thio]triphosphate (GTPγS) binding to determine if either parameter is altered in schizophrenia or bipolar I disorder. There was an effect of diagnosis on the level of [3H] 8-OH-DPAT binding that may indicate a global change in the density of serotonin 1a receptors, although this effect did not reach significance in any individual brain region. The activation of serotonin 1a receptors did not differ significantly with diagnoses. However, in the outer cortical layers, there appeared to be a dissociation between the number of receptors available and the extent of ligand-induced GTPγS binding, suggesting considerable receptor reserve. In addition, comparing gender independent of diagnoses, a decrease in the levels of serotonin 1a receptors was observed in the cortex of female subjects. These data indicates that there may be subtle changes in serotonin 1a receptors across the cortex in schizophrenia or bipolar I disorder and suggests a gender discordance in receptor levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarizotan, a 5-HT1A agonist with additional affinity for D3 and D4 receptors, has been demonstrated to have anti-dyskinetic effects. The mechanism by which these effects occur is not clear. Using unilateral 6-hydroxydopamine-lesioned rats that received chronic intraperitoneal (ip) administration of L-3,4-dihydroxyphenylalanine (L-DOPA) we investigated the involvement of D3 and 5-HT1A receptors in the effects of sarizotan on contraversive circling and abnormal involuntary movements (AIMs). Before sensitization by chronic L-DOPA treatment (12.5 with 3.25 mg/kg benserazide ip, twice daily for 21 days), no effect of the selective D3 agonist, PD128907 (1 or 3 mg/kg ip), or the selectiveD3 antagonist,GR103691 (0.5 or 1.5 mg/kg ip), was observed. Treatment with sarizotan (1 or 5 mg/kg ip) dosedependently inhibited the L-DOPA-induced contraversive turning and AIMs. In co-treatment with the 5-HT1A antagonist, WAY100635 (1 mg/kg ip), sarizotan failed to affect this behaviour, confirming the prominent 5-HT1A receptor-mediated mechanism of action. In the presence of PD128907 (3 mg/kg ip), the effects of sarizotan on contraversive turning, locomotive dyskinesia and axial dystonia, but not on orolingual and forelimb dyskinesia, were blocked. On its own, PD128907 had no effect on the behavioural effects of L-DOPA except that it tended to reduce orolingual and forelimb dyskinesia. GR103691 had no effect on its own or in combination with sarizotan. These data identify an involvement of D3 receptors in the action of sarizotan on some, but not all L-DOPA-induced motor side effects. This selective involvement is in contrast to the more general involvement of 5-HT1A receptors in the anti-dyskinetic effects of sarizotan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin is implicated in both the biology of depression and anxiety. The aim of this study was to examine the platelet intracellular calcium response to serotonin and thrombin using spectrofluorometry in 14 patients with DSM-4 panic disorder compared to 14 matched controls. Patients did not show significantly higher baseline platelet intracellular calcium levels and serotonin stimulated levels of intracellular calcium than control subjects. There was a much smaller standard deviation in the control subjects than in the panic patients. The intracellular calcium response to thrombin activation was however greater in panic patients than in control subjects (P<0.001). The failure of this study to find enhanced sensitivity of 5-HT2 receptors in panic disorder is compatible with the findings of previous challenge studies that found no consistent dysregulation of serotonin in panic disorder. The enhanced thrombin sensitivity, nevertheless suggests some receptor mediated second messenger changes independent of serotonin in the disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple lines of investigations have implicated the role of the dopaminergic system in depression. The aim of the study was to characterise the Dopamine D2 receptor sensitivity status in depressed patients versus controls by means of a novel neuro-endocrine challenge test, the prolactin response to sulpiride. In this intervention, ten patients and ten age matched male volunteers were studied. The patients were diagnosed according to DSM-IV criteria, and Montgomery Asberg and Zung scales were done. There was no significant difference in baseline levels of prolactin between the depressed and control groups. Significantly higher prolactin levels after sulpiride challenge were however found in depressed patients than controls at all time points after sulpiride administration. This neuroendocrine challenge paradigm suggests that the prolactin response to sulpiride, a D2 receptor antagonist, is enhanced in depression, which suggests that this receptor might be supersensitive in depression compared to controls. This adds to the data implicating the dopaminergic system in the pathophysiology of depression, and suggests that dopaminergic mechanisms might be a target of therapeutic interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoglutamatergic function is implicated in the pathogenesis of schizophrenia, and supersensitivity of platelet NMDA receptors has been reported in schizophrenia. The aim of this study was to examine the platelet glutamate receptor sensitivity in patients with schizophrenia (n=12), mania with psychotic features (n=10) and depression with psychotic features (n=10) and matched controls (n=12) in order to assess if this is a marker of schizophrenia or occurs in other psychotic conditions. Glutamate receptor sensitivity was assessed using the intracellular calcium response to glutamate measured with spectrofluorometry. The percentage response of the schizophrenic and depressed psychotic subjects to glutamate stimulation was significantly greater than control subjects (p<0.005). The mania with psychotic features group was not significantly different to controls. This data suggests that platelet glutamate receptors may be supersensitive in schizophrenia and depression with psychotic features. Furthermore, the platelet may be a possible peripheral marker of glutamate function in schizophrenia and depression with psychotic features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet serotonin type 2A receptor (5-HT2A) sensitivity changes have previously been documented in depression, although it is unclear if this represents a stable trait marker of the illness, or whether it represents an acute state marker of depression that would change with treatment. Electroconvulsive therapy (ECT) may be a useful intervention to separate out trait and state marker status avoiding the potential confounding effects of pharmacotherapy on receptor function. Using spectrofluorometry, the platelet 5HT2A, receptor sensitivity as reflected by the intracellular calcium response to serotonin stimulation, was measured every week in patients suffering from major depression and undergoing ECT. There was a significant drop in the platelet response to serotonin stimulation over a course of ECT, with an associated progressive decrease in Hamilton Rating Scale of Depression (HAM-D) scores. This may suggest either decreased sensitivity of platelet 5HT2A receptors as a mechanism of action of ECT, or changes in second messengers such as the inositide phospholipid system. This suggests that the enhanced sensitivity of platelet 5HT2A receptors may be a state marker of major depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysregulation of glutamate has been described in depression, and supersensitivity of platelet glutamate receptors has been found in both psychotic major depression and schizophrenia. The aim of this study was to examine the platelet glutamate receptor sensitivity in patients with nonpsychotic, unipolar major depression to assess whether this is a marker of depression or of psychosis. Glutamate receptor sensitivity was assessed using the platelet intracellular calcium response to glutamate (0-100 micromol) measured by spectrofluorometry. The depression group showed a significantly greater platelet intracellular calcium response to glutamate stimulation than the control group, both in terms of absolute values (p = 0.007) and percentage of response from baseline (p = 0.030). These data suggest that platelet glutamate receptors may be supersensitive in depression and that the platelet may be a possible peripheral marker of glutamate function in depression.