11 resultados para SECONDARY COMPOUNDS

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural organic matter (NOM) in water contains organic compounds that are both hydrophobic and hydrophilic with a wide range of molecular weights. It is composed of non-homogeneous organic compounds such as humic substances, amino acids, sugars, aliphatic and aromatic acids, and other chemical synthetic organic matters. NOM in water is a major concern not only because of its contribution to the formation of disinfection by-products (DBPs) and taste and odor, but also its influence on the demand for coagulants and disinfectants, the removal efficiency of water treatment processes, etc. This research aims at identifying the influence of NOM in coagulation and flocculation processes in order to optimize the coagulation and flocculation conditions. In this study, pretreated pond water was used as the source water. It was observed from the experimental results that: (1) The optimum pH for coagulation to remove NOM is around 7. (2) The optimum alum dose at this pH can vary from 125-1,225 mgl-1 when the TOC is increased from 4 to 25 mgl-1. (3) The presence of secondary compounds such as Ca2+, Mg2+ divalent cations had no significant effect on the removal of organic matter. (4) The presence of clay increased the organic removal by 15%. (5) The organic compound with higher molecular weight has higher removal affinity in coagulation process. (6) Floc size and settling velocity of floc and sludge production all increased with the increase in NOM concentration. From the results of Capillary Suction Time (CST) tests, the floc formed with lower TOC readily released the water to make the dewatering process easier. (7) The organic removal efficiency was significantly different for natural water containing non-homogeneous organic compounds compared to the synthetic water containing humic acid only (homogeneous organic matter). For example, the NOM removal efficiency was 80% for the synthetic water containing humic acid with TOC of 7 mgl-1 at pH 7; but the NOM removal for the pretreated pond water was 60%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (y=H (1a), Me (1b), MeO (1c)) can be prepared
either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (y = H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCh (y = H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a--c with S02Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2Teh (y = H
(4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of la--c with KI, or alternatively, by the oxidative addition of
iodine to 2a--c. The reaction of 2a--c with allyl bromide affords the diorganotellurium dibrornides la--c, rather than the expected
triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, l3C and 125Te
NMR spectroscopy (solution and solid-state) and in case of Ie also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsymmetrical1y substituted diorganotellurium dihalides [2-(4,4'-N02C6H4CHNC6H3Me]RTeX2 (R = 4-MeOC6H4, X = Cl,
1a; Br, 1b; I, 1c; R =4-MeC6H4 ; X = Cl, 2; R =C6H5, X = Cl, 3) were prepared in good yields and characterized by solution and solid-state 125Te NMR spectroscopy, IR spectroscopy and X-ray crystallography. In the solid-state, molecular structures of 1a and 1c possess scarcely observed 1,4-type intramolecular Te···N secondary interaction. Crystal packing of these compounds show an unusually rich diversity of intermolecular secondary, Te·· ·0, Te· .. \ and 1···1 interactions, Te·· ·π contacts as well as extensive
π-stacking of the organic substituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization of unsymmetric diorganotellurium compounds containing a sterically demanding I-naphthyl or
mesitylligand and a small bite chelating organic ligand capable of 1,4-Te···N(O) intramolecular interaction is described. The reaction
of ArTeCl3 (Ar = I-ClOH7, Np; 2,4,6-Me3C6H2' Mes) with (SB)HgCI [SB = the Schiff base, 2-(4,4'-N02C6H4CH=NC6H3-Me)] or a methyl ketone (RCOCH3) afforded the corresponding dichlorides (SB)ArTeCI2 (Ar = Np, 1Aa; Mes, 1Ba) or (RCOCH2)ArTeCl2 (Ar = Np; R = Ph (2Aa), Me (3Aa), Np (4Aa); Ar = Mes, R = Ph (2Ba)). Reduction of 1Aa and 1Ba by Na2S205 readily gave the tellurides (SB)ArTe (Ar = Np (1A), Mes, (1B) but that of dichlorides derived from methylketones was complicated due to partial decomposition to tellurium powder and diarylditelluride (Ar2Te2), resulting in poor yields of the corresponding tellurides 2A, 2B and 3A. Oxidation of the isolated tellurides with S02Cl2, Br2 and I2 yielded the corresponding dihalides. All the synthesized compounds have been characterized with the help of IR, 1H, l3C, and 125Te NMR and in the case of 2Aa, and 2Ba by X-ray crystallography. Appearance of only one 125Te signal indicated that the unsymmetric derivatives were stable to disproportionation to symmetric species. Intramolecular 1,4-Te· . ·0 secondary bonding interactions (SBIs) are exhibited in the crystal structures of both the tellurium(IV) dichlorides, 2Aa, and 2Ba. Steric repulsion of the mesityl group in the latter dominates over lone pair-bond pair repulsion, resulting in significant widening of the equatorial C-Te-C angle. This appears to be responsible for the lack of Te· . ·CI involved supramolecular associations in the crystal structure of 2Ba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrophilic substitution of acylmethanes (methyl ketones), RCOCH3 (R = i-Pr, 1; Et, 2; Me, 3) with aryltellurium trichlorides, ArTeCl3 (Ar = 1-C10H7, Np, A; 2,4,6-Me3C6H2, Mes, B; 4-MeOC6H4, Anisyl, C) under mild conditions affords the corresponding acylmethyl(aryl)tellurium dichlorides (RCOCH2)ArTeCl2. Reduction of the dichlorides, gives tellurides, (i-PrCOCH2)ArTe, 1A–1C, which give the corresponding dihalides, (i-PrCOCH2)ArTeX2 (X = Cl, 1Aa–1Ca; Br, 1Ab–1Cb; I, 1Ac–1Cc) when reacted in situ with SO2Cl2, Br2 or I2. The unsymmetric tellurides are labile towards disproportionation and attempts to obtain them lead to the isolation of Ar2Te2 except in the case of (i-PrCOCH2)MesTe ( 1B), which represents an interesting example of a kinetically stable aryl(alkyl)telluride. All the dihalomesityltellurium(IV) derivatives show separate 1H and 13C NMR signals for the ortho methyls irrespective of the sizes of R and X ligands. The telluride, 1B with free rotation about Te–C(mesityl) bond shows, like the unsymmetric diorganotellurium(IV) dihalides, only one 125Te NMR signal. The 1,4-chelating behavior of the acyl ligand among diorganotellurium(IV) compounds is inferred from the X-ray diffraction data for 1Aa, 1Ac, 1Ba, 1Bb, 1Ca and 1Cc which are indicative of the presence of intramolecular TeO secondary bonding interactions (SBIs) at least in the solid state. As a consequence, steric repulsion in case of the mesityltellurium(IV) derivatives, 1Ba and 1Bb, reaches the threshold so as to cause loss of two-fold rotational symmetry of the mesityl group about the Te–C(mesityl) bond axis. Intermolecular C–HO H-bonding interactions appears to stabilize such an orientation of the aryl ligand at least in the solid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the diorganotellurium oxides R2TeO (R = Ph, p-MeOC6H4, p-Me2NC6H4) with phenol and o-nitrophenol produces diorganotellurium hydroxy phenolates, R2Te(OH)OPh (1, R = Ph; 2, R = p-MeOC6H4; 3, R = p-Me2NC6H4), diorganotellurium bis(phenolates) R2Te(OPh)2 (4, R = Ph; 5, R = p-MeOC6H4; 6, R = p-Me2NC6H4), tetraorganoditelluroxane bis(o-nitrophenolates), (R′O)R2TeOTeR2(OR′) (7, R = p-MeOC6H4; 8, R = p-Me2NC6H4; R′ = o-NO2C6H4), and a hexaphenyltritelluroxane bis(o-nitrophenolate) (R′O)Ph2TeOTePh2OTePh2(OR′) (9, R′ = o-NO2C6H4), respectively. The redistribution reactions of R2Te(OPh)2 (4, R = Ph; 5, R = p-MeOC6H4; 6, R = p-Me2NC6H4) with the corresponding diorganotellurium oxides R2TeO and diorganotellurium dichlorides R2TeCl2 (R = Ph, p-MeOC6H4, p-Me2NC6H4) give rise to the formation of moisture sensitive tetraorganoditelluroxane bis(phenolates) (PhO)R2TeOTeR2(OPh) (10, R = Ph; 11, R = p-MeOC6H4; 12, R = p-Me2NC6H4) and diorganotellurium chloro phenolates, R2Te(Cl)OPh (13, R = Ph; 14, R = p-MeOC6H4; 15, R = p-Me2NC6H4), respectively. The reaction of the diorganotellurium oxides R2TeO with the corresponding diorganotellurium dichlorides R2TeCl2 (R = Ph, p-MeOC6H4, p-Me2NC6H4) affords tetraorganoditelluroxane dichlorides ClR2TeOTeR2Cl (16, R = Ph; 17, R = p-MeOC6H4; 18, R = p-Me2NC6H4) as air-stable solid materials. The reactivity of 1–18 can be rationalized by the kinetic lability of the Te–O and Te–Cl bonds. Compounds 1–18 have been characterized by solution and solid-state 125Te NMR spectroscopy and 2, 4, 6, 7, 9, 17, and 18 have also been analyzed by X-ray crystallography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of tris(2,2’-bipyridyl)ruthenium(III) (Ru(bipy) 33+) with various analytes to generate chemiluminescence has been well documented. This investigation sought to undertake a chemiluminometic study of the reactions of Ru(bipy) 33+ with selected Papaver Somniferum alkaloids and specifically synthesised phenethylamines. The investigation, based on a kinetic study, primarily addressed the effect of varying reaction conditions (pH) on Ru(bipy) 33+ chemiluminescence production. To monitor these reactions, a batch chemiluminometer was specifically designed, fabricated and automated to conduct an extensive study on the selected compounds of interest. The instrumentation incorporated a custom built reaction cell and comprised an ‘on-line’ sample preparation system with which calibration standards could be automatically prepared. The instrumentation provided both time-independent (peak area) and time-dependent (kinetic profile) information. A novel approach to the stabilisation of Ru(bipy) 33+ as a chemiluminescencent reagent was also investigated and a recirculating system was employed with the batch chemiluminometer to provide a stable supply of Ru(bipy) 33+. Codeine, thebaine and 6-methoxy-codeine were the Papaver Somniferum alkaloids selected for this study and several N-methylated and N,N-dimethylated phenethylamines and methoxy-substituted phenetheylamines were also synthesised to investigate the affect of pH on the chemiluminescence emission efficiency. The versatility of the batch chemiluminometer facilitated the kinetic study of numerous analytes over a broad pH range. The exemplary performance of the chemiluminometer as an analytical instrument, was demonstrated by the calibration functions, based on peak area data, which exhibited excellent linearity and sensitivity. The estimated detection limits (3s) for the selected alkaloids were in the range 2 x 10-9 M to 7 x 10-9 at pH 5.0 and above, which compared favourably to detection limits for the same compounds determined using FIA. Relative standard deviations (n=5) for peak areas ranged between 1% to 5% with a mean of 3.1% for all calibration standards above 2.5 x 10-8 M. Correlation between concentration and peak area, irrespective of pH and analyte was excellent, with all but two calibration functions having r-squared values greater than 0.990. The analytical figures of merit exemplified the precision and robustness of the reagent delivery and ‘on-line’ sample preparation, as well as the sensitivity of the system. The employment of the chemiluminometer for the measurement of total chemiluminescence emission (peak area) was in itself a feasible analytical technique, which generated highly reproducible and consistent data. Excellent analytical figures of merit, based on peak area, were similarly achieved for the phenethylamines. The effects of analyte structure on chemiluminescence activity was also investigated for the alkaloids and the phenethylamines. Subtle structural variations between the three alkaloids resulted in either a moderately reduced or enhanced total emission that was two or three fold difference only. A significant difference in reaction kinetics was observed between thebaine and codeine/6-methoxy-codeine, which was dependent upon pH. The time-dependent data, namely the observed rate constants for the initial rise in intensity and for the subsequent decay rate, were obtained by fitting a mathematical function (based on the postulated reaction mechanism) to the raw data. The determination of these rate constants for chemiluminescence reactions highlighted the feasibility for utilising such measurements for quantitative analytical applications. The kinetic data were used to discriminate between analyte responses in order to determine the concentrations of individual analytes in a binary mixture. A preliminary, multi-component investigation performed on a binary mixture of codeine and 6-methoxy-codeine (1:1) successfully determined the concentrations of these individual components using such rate constant measurements. Consequently, variations in kinetics resulted in a significant difference between the relative chemiluminescence response based on peak area measurements and the relative response base on peak height measurements obtained using FIA. With regards to the observed reactivity of secondary amines and tertiary amines, chemiluminescence peak area determinations confirmed the vital role of pH on reaction efficiency, which was governed by structural features and kinetics. The tertiary amines investigated generally produced a greater emission under acidic conditions than the corresponding secondary amines. However, the measured chemiluminescence responses were highly dependent upon pH, with similar peak areas obtained for both amine groups under slightly alkaline conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural “background” aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 μm) and coarse (AD > 2.5 μm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2–10 μm size range (predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 μm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are specific tracers for biomass burning, were detected only at low levels in the fine aerosol samples. On the basis of the levoglucosan-to-OC emission ratio measured for biomass burning aerosol, we estimate that an average of ∼16% of the OC in the fine aerosol was due to biomass burning during CLAIRE 2001, indicating that the major fraction was associated with biogenic particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse osmosis (RO) is the most preferable process for water recovery from secondary effluent (SE) because of its higher rejection of impurities with lower associated cost and higher quality of product. Fouling still is a major challenge during the water recovery due to higher contaminant loadings in SE and high rejection capability of this membrane. The presence of suspended solids, colloidal and organic matters, and high level of biological activities in SE further elevate fouling potentiality. This review was performed to identify major foulants causing hindrance in sustainable application of reverse osmosis and to present available pre-treatment options for these foulants. There are four fouling types present in RO namely; bio-fouling, inorganic/scaling, organic, and particulate fouling. Among them; bio-fouling is less understood but dominant since the pre-treatment options are not well developed. Other fouling mechanisms have been overcome by well developed pre-treatments. The major foulants for RO are dissolved and macromolecular organic substances, sparingly soluble inorganic compounds, colloidal and suspended particles, and micro-organisms. Some of these potential fouling water quality parameters (PFWQPs) are interrelated with each others such as electrical conductivity is a surrogate measure of total dissolved solids with established stable relationship. Most of these PFWQPs such as total suspended solids, turbidity, chemical oxygen demand can be removed by conventional pre-treatment; some such as colloidal particles and micro-organisms by modern options and even others such as endocrine disrupting compounds, pharmaceutical and personal care products are still challenging for current pre-treatments. These foulants need to be identified properly to integrate appropriate pre-treatments for minimizing fouling potentiality to increase water recovery at minimal costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Mycorrhiza, a symbiotic soil fungus was identified as a biotic elicitor of antioxidant compounds found in the plant roots. In vitro developed technique and bioresources carry potential towards formation of biological and biochemical factories for application in the agricultural and pharmaceutical industries.