8 resultados para SEASONAL MIGRATION

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We recorded a diverse cetacean assemblage from systematic aerial surveys in productive upwelling waters off southern Australia in 2002-2013. Surveys recorded 133 sightings of 15 identified cetacean species consisting of 7 mysticete (baleen) whale species, 8 odontocete (toothed) species, and 384 sightings of unidentified dolphins. This is the first assessment of cetacean diversity for the region and we found diversity to be comparable with other productive regions elsewhere. Differential spatial and temporal distributions of mysticete and odontocete species were apparent, and were associated with habitat variables and seasonal migration cycles. The study contributes new information to assist the environmental planning and management of activities in the region, including oil, and gas exploration and production, fishing, shipping, and renewable energy development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migratory animals are simultaneously challenged by the physiological demands of long-distance movements and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse pathogens across large geographic areas has prompted a growing body of research investigating the interactions between migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration has the potential to generate both "superspreader species" and infection "hotspots". However, migration has also been shown to reduce transmission in some species, by facilitating parasite avoidance ("migratory escape") and weeding out infected individuals ("migratory culling"). This symposium was convened in an effort to characterize more broadly the role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity. We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations to both increase and reduce infection risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The giant crab Pseudocarcinus gigas occurs along the continental shelf break of southern Australia. During the summer alongshore winds cause cooler water to upwell onto the shelf, and the crabs move from deeper water onto the shelf where there is more food. The combination of a preferred thermal niche and a depth-stratified food supply defines the favorable foraging environments that enhance the growth of P. gigas. Climate change is expected to cause a southerly shift of the austral subtropical high-pressure belt, and modelers have predicted more upwelling-favorable winds. The associated increase in the circulation of cooler water across the shelf is likely to provide P. gigas with an increased access to benthic food resources and their growth rate may increase in some regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plankton samples collected and analyzed by the Continuous Plankton Recorder survey were used to examine the length of time spent near the surface in the North Atlantic and the North Sea by three closely related groups of zooplankton (copepodite stages 1-4 Metridia spp., copepodite stages 5-6 Metridia lucens, and copepodite stages 5-6 Metridia longa). For all three groups, the mean daily length of time spent near the surface in each month of the year covaried seasonally with day length. In addition, the amount of time spent near the surface varied significantly between the three groups, being longest for the copepods of smallest body size (C 1-C4 Metridia spp.) and shortest for the copepods of largest body size (C5-C6 M. longa). These results support the suggestion that diel vertical migration serves to reduce the risk of mortality from visually orienting predators

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Habitat use can influence individual performance in a wide range of animals, either immediately or through carry-over effects in subsequent seasons. Given that many animal species also show consistent individual differences in reproductive success, it seems plausible that individuals may have consistent patterns of habitat use representing individual specializations, with concomitant fitness consequences.

2. Stable-carbon isotope ratios from a range of tissues were used to discern individual consistency in habitat use along a terrestrial–aquatic gradient in a long-distance migrant, the Bewick’s swan (Cygnus columbianus bewickii). These individual specialisations represented <15% of the isotopic breadth of the population for the majority of individuals and were seen to persist throughout autumn migration and overwintering until aquatic habitats were no longer available.

3. Individual foraging specialisations were then used to demonstrate two consecutive carry-over effects associated with macroscale habitat segregation: consequences of breeding season processes for autumn habitat use; and consequences of autumn habitat use for future reproductive success. Adults that were successful breeders in the year of capture used terrestrial habitats significantly more than adults that were not successful, revealing a substantial cost of reproduction and extended parental care. Use of aquatic habitats during autumn was, however, associated with increased body condition prior to spring migration; and increased subsequent breeding success in adults that had been unsuccessful the year before. Yet adults that were successful breeders in the year of capture remained the most likely to be successful the following year, despite their use of terrestrial habitats.

4. Our results uniquely demonstrate not only individual foraging specializations throughout the migration period, but also that processes during breeding and autumn migration, mediated by individual consistency, may play a fundamental role in the population dynamics of long-distance migrants. These findings, therefore, highlight the importance of long-term consistency to our understanding of habitat function, interindividual differences in fitness, population dynamics and the evolution of migratory strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The archived data set collected over a 45-yr period (1948-1992) by Continuous Plankton Recorders (CPRs) towed in near-surface waters was used to investigate the diel vertical migration of the copepod Metridia lucens in the northeast Atlantic (47-63?N and 10-30?W). Although the CPR sampling intensity was uniform during the day and the night, M. lucens was caught predominantly in samples collected at night, consistent with a normal diel vertical migration pattern involving movement from greater depth during the day to shallower depths at night. The length of time spent near the surface varied seasonally and was closely correlated (r2 = 0.80) with seasonal change in length of night. The residual variation in length of time spent at the surface was nonrandom, with more time being spent at the surface in spring before the onset of the spring bloom, and less time being spent at the surface in autumn, than that predicted from the length of night at these periods. The timing of this enhanced near-surface occupation in spring varied with latitude, occurring a mean of 3.4 d later per degree of latitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.