6 resultados para SCF

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The syntheses of cyclo-[R2Sn(OPPh2O)2SnR2](O3SCF3)2 (R = Me (1), t-Bu (2)) by the consecutive reaction of R2SnO (R = Me, t-Bu) with triflic acid and diphenylphosphinic acid are presented. In the solid state, 1 and 2 were investigated by 119Sn MAS and 31P MAS NMR spectroscopy as well as X-ray crystallography and appear to exist as ion pairs of cyclo-[R2Sn(OPPh2O)2SnR2]2+ dications and triflate anions. In solution, 1 and 2 are involved in extensive equilibria processes featuring cationic diorganotin(IV) species with Sn-O-P linkages, as evidenced by 119Sn and 31P NMR spectroscopy, electrospray mass spectrometry, and conductivity measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of [R2Sn(H2O)2(OPPh3)2](O3SCF3)2 (R = Me (1), Bu (2)) by the consecutive reaction of R2SnO (R = Me, Bu) with triflic acid and Ph3PO is described. Compounds 1 and 2 feature dialkyltin(IV) dications [R2Sn(H2O)2(OPPh3)2]2+ apparently stabilized by the neutral ligands in the solid state. Compounds 1 and 2 readily dehydrate upon heating at 105 and 86 °C, respectively. The preparative dehydration of 1 afforded [Me2Sn(OPPh3)2(O3SCF3)](O3SCF3) (1a), which features both bidentate and non-coordinating triflate anions. In compounds 1 and 2 the ligands Ph3PO and H2O are kinetically labile in solution and undergo reversible ligand exchange reactions. Compounds 1, 1a and 2 were characterized by multinuclear solution and solid-state NMR spectroscopy, IR spectroscopy, electrospray mass spectrometry, conductivity measurements, thermogravimetry and X-ray crystallography.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The condensation of [Ph2(OH)Sn(CH2)nSn(OH)Ph2] (1-3; n = 1-3) with HO3SCF3 and HO2PPh2 provided [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) and [Ph2(O2PPh2)Sn(CH2)nSn(O2PPh2)Ph2] (10-12; n = 1-3), respectively. The reaction of [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) with HO2PPh2 and NaO2PPh2 gave rise to the formation of [Ph2Sn(CH2)nSnPh2(O2PPh2)](O3SCF3) (7-9; n = 1-3) and [Ph2(OH)Sn(CH2)nSn(O2PPh2)Ph2] (13-15; n = 1-3), respectively. In the solid state, compounds 4-9 comprise ion pairs of cationic cyclo-[Ph2SnCH2SnPh2(OH)]22+, cyclo-[Ph2Sn(CH2)nSnPh2(OH)]+ (n = 2, 3), and cyclo-[Ph2Sn(CH2)nSnPh2(O2PPh2)]+ (n = 1-3) and triflate anions. In MeCN, the eight-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]22+ appears to be in equilibrium with the four-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]+. In contrast, compounds 10-15 show no ionic character. Compounds 1-15 were characterized by multinuclear NMR spectroscopy in solution and in the solid state, IR spectroscopy, conductivity measurements, electrospray mass spectrometry, osmometric molecular weight determinations, and X-ray crystallography (4, 5, 7, and 12).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of (p-MeOC6H4)2TeO with two equivalents of HO3SCF3 and HO2PPh2 provided the tetraorganoditelluroxanes (F3CSO3)(p-MeOC6H4)2TeOTe(p-MeOC6H4)2(O3SCF3) (1) and (Ph2PO2)(p-MeOC6H4)2TeOTe(p-MeOC6H4)2(O2PPh2)·2 Ph2PO2H (2) in good yields. Compounds 1 and 2 were characterized by solution and solid-state 31P and 125Te NMR spectroscopy, IR spectroscopy, electrospray mass spectrometry, conductivity measurements and single crystal X-ray diffraction. In solution, compound 1 undergoes an electrolytic dissociation and reversibly reacts with traces of water to give the mononuclear cation [(p-MeOC6H4)2TeOH]+ and triflate anions. Theoretical aspects of the protonation and hydration of model telluroxanes R2TeO (R = H, Me, Ph) were investigated by preliminary DFT calculations and compared to the corresponding selenoxanes R2SeO. The tellurium dihydroxides R2Te(OH)2 seem to be more stable than the hydrogen-bonded complexes R2TeO·H2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of 8-dimethylaminonaphthyllithium etherate with the tellurium(II) bis(dithiocarbamate) Te(S2CNEt2)2 provided the diaryltelluride (8-Me2NC10H6)2Te (1). The oxidation of 1 with an excess of H2O2 did not afford the expected diaryltellurium(IV) oxide (8-Me2NC10H6)2TeO (2), but the diaryltellurium(VI) dioxide (8-Me2NC10H6)2TeO2 (3). The preparation of 2 was achieved by the comproportionation reaction of 1 and 3. The protonation of 2 using triflic acid gave rise to the formation of diarylhydroxytelluronium triflate [(8-Me2NC10H6)2Te(OH)](O3SCF3) (4), which features the protonated diaryltellurium oxide [(8-Me2NC10H6)2Te(OH)]+ (4a). Compounds 1, 3·H2O·H2O2, 3·2H2O, and 4 were characterized by X-ray crystallography. The experimentally obtained molecular structures were compared to those calculated for 1–3, 4a, and (8-Me2NC10H6)2Te(OH)2 (5) as well as the related diphenyltellurium compounds Ph2Te (6), Ph2TeO (7), Ph2TeO2 (8), [Ph2Te(OH)]+ (9a), and Ph2Te(OH)2 (10) at the DFT/B3PW91 level of theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes₂)]O₃SCF₃ (1) featuring the cation [MesTe(TeMes₂)]+ (1a) was obtained by the reaction of Mes₂Te with HO₃SCF₃. The reaction of 1 with Ph₃E (E = P, As, Sb, Bi) proceeded with substitution of Mes₂Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh₃)]O₃SCF₃ (2, E = P; 3, E = As) and [MesTe(SbPh₃)][Ph₂Sb(O₃SCF₃)₂] (4) featuring the cations [MesTe(EPh₃)]+ (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph₂Sb(O₃SCF₃)₂]− (4b). In the reaction with Ph₃Bi, the crude product contained the cation [MesTe(BiPh₃)]+ (5a) and the anion [Ph₂Bi(O₃SCF₃)₂]− (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh₃)][Ph₂Bi(O₃SCF₃)₂] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph₂BiO₃SCF₃ (6), which was also obtained by the reaction of Ph₃Bi with HO₃SCF₃. The formation of the anions 4b and 5b involves a phenyl group migration from Ph₃E (E = Sb, Bi) to the MesTe+ cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2–4 were also obtained by the one-pot reaction of Mes₂Te, Ph₃E (E = P, As, Sb) and HO₃SCF₃. Compounds 1–4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a–4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density.