16 resultados para SATURABLE ABSORBER

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solar absorber structure has been proposed and studied in this paper. The metal tubes running perpendicular to a set of parallel rectangular metal fins make the solar absorber with rectangular slots. Studies on the collector were theoretically carried out in the aspects of heat transfer, thermodynamics and . hydrodynamics. The calculating methods for calculating fin efficiency F and efficiency factors of the collector F' were obtained. The results showed that the new solar collector would have the higher efficiency and better performance at higher fluid temperature than that of the traditional flat-plate collectors. A collector prototype with the new structure was built and tested. The testing results agree with our theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo yellowing of wool is one of the most important problems which have negative impacts on various aspects of wool prompting scientists to find a solution over the past decades. In this research the protective features of nano-titanium dioxide particles against UV on wool fabric were discussed and the color variations of wool samples after UV irradiation were measured and reported. It was shown that nano TiO2 is a suitable UV absorber and its effect depends on the concentration. Also, it was assumed that butane tetracarboxylic acid plays a prominent role as a cross-linking agent to stabilize the nano-titanium dioxide as well as a polyanion to maintain negative charges on the wool surface for higher nano particles absorption. Also the variables conditions were optimized using response surface methodology (RSM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of solar collectors with coloured absorbers for water heating is an area of particular interest when considering their integration with buildings. By matching the absorber colour with that of the roof or façade of the building, it is possible to achieve an architecturally and visually pleasing result. Despite the potential for the use of coloured absorbers, very little work has been undertaken in the field.

In this study, the thermal performance of a series of coloured (ranging from white to black), building integrated solar collectors for water heating was examined both theoretically and experimentally. Subsequently, the annual solar fraction for typical water heating systems with coloured absorbers was calculated. The results showed that coloured solar collector absorbers can make noticeable contributions to heating loads. Furthermore, although their thermal efficiency is lower than highly developed selective coating absorbers, they offer the advantage of improved aesthetic integration with buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The useful life of many outdoor textile products is limited by degradation caused by exposure to sunlight, in particular by the ultra violet component (below 400 nm). The degradation results in fading of colours and also loss of physical properties, such as tear strength and abrasion resistance. Degradation can be decreased with UV absorbers, often used in conjunction with antioxidants or free radical quenchers. The protection afforded by these organic compounds is, however, limited as they are ultimately destroyed by the UV radiation they absorb.
An alternative approach is to coat fabrics with a polymer containing an inorganic UV absorber, such as zinc oxide. The inherent stability of zinc oxide would be expected to provide a protective effect over a much longer period than can be achieved with an organic UV absorber. A possible disadvantage of zinc oxide when applied in a polymer film is that absorption and scattering of visible light can produce hazy films and, hence, an unacceptable change in fabric appearance.
This poster paper examines the possibility of using nano particles of zinc oxide dispersed in acrylic polymers for protecting dyed polyester fabrics against sunlight fading. Factors affecting both UV absorbance and film clarity will be discussed. The possibility will also be examined that the protective effect may be reduced in some circumstances by reactive oxygen species, generated by the interaction of UV with zinc oxide in the presence of air and water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nano-sized Mg2Al layered double hydroxide (LDH) was used for encapsulating an organic UV absorber, 2-hydroxy-4- methoxybenzeophenone-5-sulfonic acid (HMBS), to produce HMBS@LDH hybrid nano-platelets. Upon dispersing this organic-inorganic hybrid LDH into ethylene-vinyl alcohol copolymer (EVOH) for film casting, a thin polymer
nanocomposite film that is UV opaque but highly transparent to visible light (higher than 90%) was formed. Thermogravimetry (TG) analysis confirmed that the intercalation of HMBS into LDH considerably increased the thermal stability of HMBS. Such an improvement was attributed to the strong guest-host interaction between the HMBS anions and the LDH layers. Also, the nanocomposite films were flexible and had good mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Though ZnO nanoparticles (NPs) are an excellent UV absorber, their photocatalytic activity greatly limits the application areas of these particles. Under sunlight exposure, ZnO NPs used as a UV absorber can accelerate the wool yellowing process by generating free radicals. To reduce this photocatalysis effect, a physical barrier has been fabricated by coating the ZnO NPs with a silica layer (ZnO@SiO2), hence providing good UV-shielding with low photocatalytic activity. The structure and optical properties of ZnO and ZnO@SiO2 NPs were characterized by transmission electron microscope (TEM) and UV–Vis spectrum. The photocatalytic activity of ZnO and ZnO@SiO2 NPs was evaluated by photo-degradation of Rhodamine B. The ZnO and ZnO@SiO2 NPs were applied to knitted wool fabrics using the dip coating method. The treated wool fabrics were characterized by a scanning electron microscope (SEM) and the photoyellowing level of treated fabrics after exposure under simulated sunlight was evaluated by a Datacolor Spectraflash spectrophotometer. The ZnO@SiO2 NPs demonstrated excellent protection of wool against photoyellowing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ∼0.23–0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bleached wool is rapidly yellowed by exposure to the UV radiation present in sunlight. The conventional application of a water-soluble hydroxyphenyl benzotriazole UV absorber (such as UVFast W) to bleached wool reduces its rate of photoyellowing but has a negative impact on the whiteness of the bleached wool, largely cancelling out the improvements in whiteness achieved during bleaching. However, if the UV absorber is applied to peroxide-bleached wool from a reductive bleach bath, white wool with improved photostability to sunlight and UV radiation can be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wool is the most important animal fiber used in textile industries, but its photostability is very low. Scientists have searched for new ways to increase the photostability of wool. As TiO2 nano particles have features suitable for new applications, the UV-blocking power of nano TiO2 may be used for protecting fabrics against UV rays. Treatment of wool with TiO 2 can be effective for controlling photodegradation. This study focused on protecting wool fabric against UV rays using nano TiO2. To this end, oxidized and raw wool were treated with citric acid as the cross-linking agent and different concentrations of nano TiO2. The whiteness and yellowness of wool fabric samples were reported. XRD patterns proved the existence of TiO2 nano-particles on the wool surface. Finally, the results revealed that nano TiO2 is a suitable UV absorber on wool fabric and its effect depends on concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was designed to investigate the ability of silica-coated ZnO (ZnO&SiO2) nanoparticles (NPs) as ultraviolet (UV) absorbers for protecting pre-dyed polyester fabrics against photofading. Despite that ZnO NPs are excellent UV absorbers, their strong photocatalytic activity limits the application in UV protection. In this study, a silica layer was coated onto ZnO NPs to form a physical barrier between the ZnO and a polyester substrate, which allowed effective UV shielding while minimising the harmful effects of photocatalytic activity on the substrate. The structure and optical proprieties of ZnO&SiO2 NPs were observed. The bare ZnO and ZnO&SiO2 NPs were, respectively, applied to polyester fabrics coloured with three kinds of dyes by a dip coating method. The photofading level of treated fabrics after exposure under simulated sunlight was evaluated. The ZnO&SiO2 NPs exhibited excellent protection on pre-dyed polyester fabrics against photofading.