7 resultados para Roofing

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives of this work are to establish a relationship between solar radiation and equivalent temperatures for the radiation heat source (oven) to be used in the laboratory and to determine the impact of solar radiation on the absorption and evaporation potential of roofing tiles (glazed and unglazed). Based on the results obtained, it is justifiable to conclude that solar radiation do affect the evaporation and absorption potential of the glazed and unglazed tiles. There is a trend of decrease in both the absorption and evaporation potential of both tiles when exposed to decreasing solar radiation. The evaporation potential of the roof tiles is much higher than its absorption potential. This is clearly displayed in both types of tiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrating solar energy devices with building products is a rapidly growing market in the building industry. The aim is to make solar devices that integrate into a standard facade, window, roof tile, membrane roof or long run roof. These serve as weatherproofing for a building and also generate electrical and thermal energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of onsite renewable energy cogeneration from structural building elements is a relatively new concept, and one that is gaining considerable interest in the building industry. In this study the design, development, testing and production methods for a novel building integrated photovoltaic/thermal (BIPVT) solar energy cogeneration system are examined and discussed.

During the analysis of the design, adhesives (ADH), resistance seam welding (RSW) and autoclaving (ATC) were identified as the most appropriate for fabricating BIPVT panels for roofing and façade applications. Of these manufacturing methods ADH was found to be most suitable for low volume production systems due to its low capital cost.

Furthermore, a prototype panel was fabricated using ADH methods and exhibited good thermal performance. In addition it was shown, using experimental testing, that the performance of a BIPVT could be theoretically predicted using a one-dimensional heat transfer model. Furthermore, the model was used to suggest further improvements that could be made to the design. Finally, a transient simulation of the BIPVT was performed in TRNSYS and was used to illustrate the long term benefits of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using renewable energy sources for onsite cogeneration from structural building elements is a relatively new concept and is gaining considerable interest. In this study the design, development, manufacturing and testing of a novel building integrated photovoltaic/thermal (BIPVT) solar energy cogeneration system is discussed.

Adhesives (ADH), resistance seam welding (RSW) and autoclaving (ATC) were identified as the most appropriate for fabricating BIPVT roofing panels. Of these manufacturing methods ADH was found to be most suitable for low volume production systems due to its low capital cost.

A prototype panel, fabricated using ADH methods, exhibited good thermal performance. It was also shown that BIPVT performance could be theoretically predicted using a one dimensional heat transfer model and showed excellent agreement with experimental data. The model was used to suggest further design improvements. Finally, a transient simulation of the BIPVT was performed in TRNSYS and is used to illustrate the benefits of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is not new, however it is an area that has received only limited attention. With concern growing over energy sources and their usage, PVTs have become an area receiving more attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies in domestic, commercial and industrial applications. As such, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector is theoretically analysed through the use of a modified Hottel-Whillier model. The thermal and electrical efficiency under a range of conditions are subsequently determined and results showing how key design parameters influence the performance of the BIPVT system are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of solar energy systems into buildings has been the subject of considerable commercial and academic research, particularly building integrated photovoltaics. However, the integration of solar hot water systems into roofing systems has had far less attention. This paper presents the theoretical and experimental results of a novel building integrated solar hot water system developed using existing long run roofing materials.

This work shows that it is possible to achieve effective integration that maintains the aesthetics of the building and also provides useful thermal energy. The results of an unglazed 108m2 swimming pool heater and 8m2 glazed domestic hot water systems are presented.

The experimental results show that the glazed system performs close to the theoretical model and is an effective provider of hot water in certain climates. However it was also found that for larger scale building integrated solar water heating systems, special attention must be paid to the configuration and arrangement of the collectors in order to minimise problems with respect to flow distribution and its effect on collector and system efficiency.