9 resultados para Rhizobium radiobacter

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American centre of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 4,537,948, 1,266,105, 501,946, 308,747 and 257,956 bp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic,motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from anodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in thegreenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565has a broad host range for nodulation within the clover genus, however N2-fixationis sub-optimal with some Trifoliumspecies and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genomesequence information and annotation. The 6,905,599 bp high-quality-draft genomeis arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genesand 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequencedas part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia forBacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii SRDI943(syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI943was isolated from a nodule recovered from the roots of the annual clover Trifoliummichelianum savi cv. paradanathat had been inoculated with a soil collected from a mixed pasture in Victoria, Australia. SRDI943 has a broadhost range for nodulation within the clover genus, however N2-fixationis sub-optimal (20-54% of reference strain WSM1325) on T. subterraneum spp.Here we describe the features of R. leguminosarum bv. trifolii strain SRDI943, together with genomesequence information and annotation. The 7,412,387 bp high-quality-draft genomeis arranged into 5 scaffolds of 5 contigs, contains 7,317 protein-coding genesand 89 RNA-only encoding genes, and is one of 100 rhizobial genomes sequencedas part of the DOE Joint Genome Institute 2010 Genomic Encylopedia for Bacteriaand Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Legumes develop root nodules from pluripotent stem cells in the rootpericycle in response to mitogenic activation by a decorated chitin-likenodulation factor synthesized in Rhizobium bacteria. The soybean genes encoding the receptor for such signals were cloned using map-based cloning approaches. Pluripotent cells in the root pericycle and the outer or inner cortex undergo repeated cell divisions to initiate a composite nodule primordium that develops to a functional nitrogen-fixing nodule. The process itself is autoregulated, leading to the characteristic nodulation of the upper root system. Autoregulation of nodulation (AON) in all legumes is controlled in part by a leucine-rich repeat receptor kinase gene (GmNARK). Mutations of GmNARK, and its other legume orthologues, result in abundant nodulation caused by the loss of a yet-undefined negative nodulation repressor system. AON receptor kinases are involved in perception of a long distance, root-derived signal, to negatively control nodule proliferation. GmNARK and LjHAR1 are expressed in phloem parenchyma. GmNARK kinase domain interacts with Kinase Associated Protein Phosphatase (KAPP). NARK gene expression did not mirror biological NARK activity in nodulation control, as q-RT-PCR in soybean revealed high NARK expression in roots, root tips, leaves, petioles, stems and hypocotyls, while shoot and root apical meristems were devoid of NARK RNA. High through-put transcript analysis in soybean leaf and root indicated that major genes involved in JA synthesis or response are preferentially down-regulated in leaf but not root of wild type, but not NARK mutants, suggesting that AON signaling may in part be controlled by events relating to hormone metabolism. Ethylene and abscisic acid insensitive mutants of L. japonicus are described. Nodulation in legumes has significance to global economies and ecologies, as the nitrogen input into the biosphere allows food, feed and biofuel production without the inherent costs associated with nitrogen fertilization [1]. Nodulation involves the production of a new organ capable of nitrogen fixation [2] and as such is an excellent system to study plant – microbe interaction, plant development, long distance signaling and functional genomics of stem cell proliferation [3, 4]. Concerted international effort over the last 20 years, using a combination of induced mutagenesis followed by gene discovery (forward genetics), and molecular/biochemical approaches revealed a complex developmental pathway that ‘loans’ genetic programs from various sources and orchestrates these into a novel contribution. We report our laboratory’s contribution to the present analysis in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.