2 resultados para Reversible systems

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel polythienylenevinylene (PTV) and two new polythiophenes (PTs), featuring fused tetrathiafulvalene (TTF) units, have been prepared and characterized by ultraviolet−visible (UV−vis) and electron paramagnetic resonance (EPR) spectroelectrochemistry. All polymers undergo two sequential, reversible oxidation processes in solution. Structures in which the TTF species is directly linked to the polymer backbone (2 and 4) display redox behavior which is dictated by the fulvalene system. Once the TTF is spatially removed from the polymer chain by a nonconjugated link (polymer 3), the electroactivity of both TTF and polythiophene moieties can be detected. Computational studies confirm the delocalization of charge over both electroactive centers (TTF and PT) and the existence of a triplet dication intermediate. PTV 4 has a low band gap (1.44 eV), is soluble in common organic solvents, and is stable under ambient conditions. Organic solar cells of polymer 4:[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) have been fabricated. Under illumination, a photovoltaic effect is observed with a power conversion efficiency of 0.13% under AM1.5 solar simulated light. The onset of photocurrent at 850 nm is consistent with the onset of the π−π absorption band of the polymer. Remarkably, UV−vis spectroelectrochemistry of polymer 4 reveals that the conjugated polymer chain remains unchanged during the oxidation of the polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the complete, rapid, and reversible switching between the emissions from two electrogenerated chemiluminescence (ECL) systems contained within the same solution, controlled by simple modification of the applied potential. The fundamental bases of the approach are the ability to selectively 'switch on' luminophores at distinct oxidation potentials, and an intriguing observation that the emission from the well-known electrochemiluminescent complex, fac-Ir(ppy)3, (where ppy is 2-phenylpyridinato), can be selectively 'switched-off' at high overpotentials. The dependence of this phenomenon on high concentrations of the co-reactant implicates quenching of the excited [Ir(ppy)3]* state by electron transfer. Rapid spectral scanning during modulation of the applied potential reveals well resolved maxima for mixtures comprising either green and red or green and blue luminophores, illustrating the vast potential of this approach for multiplexed ECL detection.