17 resultados para Resonance Raman Spectrum

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman and photoluminescence (PL) spectra of nanocrystalline zinc oxide produced by mechanochemical synthesis were measured using a pulsed nitrogen laser (337.1 nm) and xenon lamp (360 nm) as excitation sources in PL measurements and a cw Nd:YAG laser in Raman measurements. PL was observed in the range 400–800 nm. The Raman spectrum of nanocrystalline (90 nm) ZnO was compared to that of coarsegrained ZnO. The Raman bands of nanocrystalline zinc oxide were found to be shifted to lower frequencies and broadened. Laser radiation was shown to cause local heating of zinc oxide up to 1000 K, resulting in photoinduced formation of zinc nanoclusters. Mixtures of zinc oxide and sodium chloride powders are heated to substantially lower temperatures. Under nitrogen laser excitation, the green PL band (535 nm), characteristic of bulk ZnO, is shifted to longer wavelengths by 85 nm. The results are interpreted in terms of light confinement in zinc oxide microclusters consisting of large number of nanocrystallites. The photoinduced processes in question may be a viable approach to producing metal-insulator structures in globular photonic crystals, opals, filled with zinc oxide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hexagonal and truncated hexagonal shaped MoO3 nanoplates (MoO3 HNP) were synthesized through a simple vapor-deposition method in Ar atmosphere under ambient pressure without the assistant of any catalysts. The structure and morphology of MoO3 HNP were investigated by XRD, EDX, SEM, TEM, and HRTEM. The results reveal that the HNP are α-MoO3 and have a large area surface. The Raman spectrum shows a significant size effect on the vibrational property of MoO3 HNP. The photoluminescence (PL) spectrum was carried out, and two peaks at 351 and 410 nm were observed in the spectrum. In addition, a possible growth mechanism proposed as VS is discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved extinction spectra assisted with two-dimensional correlation spectroscopy (2DCOS) analysis and principal component analysis (PCA) were employed to investigate the interaction between bovine serum albumin (BSA) and metal nanoparticles (NPs). A series of localized surface plasmon resonance (LSPR) spectra of metal NPs were measured just after a small amount of BSA was added into metal colloids. Through 2DCOS analysis, remarkable changes in the intensities of the LSPR were observed. The interaction process was totally divided into three periods according to the PCA. Transmission electron microscopy, dynamic light scattering, and ζ-potential measurements were also employed to characterize the interaction between BSA and metal NPs. The addition of BSA brings silver NPs to aggregate through the electrostatic interaction between them, but it has less effect on gold NPs. In a gold and silver mixed system, gold NPs can affect the interaction of silver NPs and BSA, leading it to weaken. The combination of 2DCOS analysis and LSPR spectroscopy is powerful for exploring the LSPR spectra of the metal NP involved systems. This combined technique holds great potential in LSPR sensing through analysis of slight, slim spectral changes of metal colloids

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel sinusoidal shape nano-particle employed in localized surface plasmon resonance (LSPR) devices. Numerical modeling demonstrates advantages offered by the proposed nano-sinusoid on LSPR enhancement against other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new nano-sinusoid shape has recently been proposed, which offers the advantage of more resonance wavelength tunability than that offered by other sharp-tip nano-particles. In this paper, a one-dimensional (1D) chain of the nano-sinusoids is modelled, and results are compared with those describing chains of nano-triangles and nano-diamonds. It is demonstrated that the chain of nano-sinusoids provides more enhancement at hot spots than other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of two-dimensional (2D) arrays of NPs demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a simple, rapid, and robust method to synthesize surface-enhanced Raman-scattered gold nanoparticles (GNPs) based on green chemistry. Vitis vinifera L. extract was used to synthesize noncytotoxic Raman-active GNPs. These GNPs were characterized by ultraviolet-visible spectroscopy, dynamic light-scattering, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characteristic surface plasmon-resonance band at ~528 nm is indicative of spherical particles, and this was confirmed by TEM. The N–H and C–O stretches in FTIR spectroscopy indicated the presence of protein molecules. The predominant XRD plane at (111) and (200) indicated the crystalline nature and purity of GNPs. GNPs were stable in the buffers used for biological studies, and exhibited no cytotoxicity in noncancerous MIO-M1 (Müller glial) and MDA-MB-453 (breast cancer) cell lines. The GNPs exhibited Raman spectral peaks at 570, 788, and 1,102 cm-1. These new GNPs have potential applications in cancer diagnosis, therapy, and ultrasensitive biomarker detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial dysfunction and oxidative stress are increasingly implicated in the pathophysiology of schizophrenia. The brain is the body's highest energy consumer, and the glutathione system is the brain's dominant free radical scavenger. In the current paper, we review the evidence of central and peripheral nervous system anomalies in the oxidative defences of individuals with schizophrenia, principally involving the glutathione system. This is reflected by evidence of the manifold consequences of oxidative stress that include lipid peroxidation, protein carboxylation, DNA damage and apoptosis - all potentially part of the process of neuroprogression in the disorder. Importantly, oxidative stress is amenable to intervention. We consider the clinical potential of some possible interventions that help reduce oxidative stress, via augmentation of the glutathione system, particularly N-acetyl cysteine. We argue that a better understanding of the mechanisms and pathways underlying oxidative stress will assist in developing the therapeutic potential of this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormalities within white matter (WM) have been identified in autism spectrum disorder (ASD). Although there is some support for greater neurobiological deficits among females with ASD, there is little research investigating sex differences in WM in ASD. We used diffusion tensor imaging (DTI) to investigate WM aberration in 25 adults with high-functioning ASD and 24 age-, sex- and IQ-matched controls. Tract-based spatial statistics (TBSS) was used to explore differences in WM in major tract bundles. The effects of biological sex were also investigated. TBSS revealed no differences in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), or axial diffusivity (AD) between groups. There were no effects of biological sex. We consider whether methodological differences between past studies have contributed to the highly heterogeneous findings in the literature. Finally, we suggest that, among a high-functioning sample of adults with ASD, differences in WM microstructure may not be related to clinical impairment.