40 resultados para Residual stresses

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burnishing is a surface modification process, which involves plastic deformation of the material at the surface of the component due to the application a highly polished and hard roller, under pressure. This results in the improvement of the surface finish of the component and induces residual compressive stresses on the surface of the component. The present work deals with the optimization of the burnishing force for the best surface finish, at constant speed and feed, for Aluminium and Mild steel workpieces. A 3dimensional finite element model is proposed for the simulation of the burnishing process, and the analysis is carried out at the optimum force determined experimentally. The induced compressive stress in the components is determined from the finite element analysis and this value is then compared with the results obtained from X-ray diffraction technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface finish is an important factor in creating the durable metal components, and fatigue strength can be improved if compressive residual stresses are produced in the surface. Burnishing is a finishing process and compressive residual stresses are induced during the process. The present study of minimizing the surface roughness based on the experimental work, and finite element model was developed to evaluate the analytical results. Commercial purity Mild Steel and Aluminium were selected as work specimens and a high carbon high chromium roller was used as a tool for the burnishing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an emerging surface treatment technology for metallic materials, which appears to produce more significant compressive residual stresses than those from the conventional shot peening (SP) for fatigue, corrosion and wear resistance, etc. The finite element method has been applied to simulate the laser shock peening treatment to provide the overall numerical assessment of the characteristic physical processes and transformations. However, the previous researchers mostly focused on metallic specimens with simple geometry, e.g. flat surface. The current work investigates geometrical effects of metallic specimens with curved surface on the residual stress fields produced by LSP process using three-dimensional finite element (3-D FEM) analysis and aluminium alloy rods with a middle scalloped section subject to two-sided laser shock peening. Specimens were numerically studied to determine dynamic and residual stress fields with varying laser parameters and geometrical parameters, e.g. laser power intensity and radius of the middle scalloped section. The results showed that the geometrical effects of the curved target surface greatly influenced residual stress fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an emerging surface treatment technology for metallic materials, which appears to produce more significant compressive residual stresses than those from the conventional shot peening (SP) for fatigue, corrosion and wear resistance, etc. The finite element method has been applied to simulate the laser shock peening treatment to provide the overall numerical assessment of the characteristic physical processes and transformations. However, the previous researchers mostly focused on metallic specimens with simple geometry, e.g. flat surface. The current work investigates geometrical effects of metallic specimens with curved surface on the residual stress fields produced by LSP process using three-dimensional finite element (3-D FEM) analysis and aluminium alloy rods with a middle scalloped section subject to two-sided laser shock peening. Specimens were numerically studied to determine dynamic and residual stress fields with varying laser parameters and geometrical parameters, e.g. laser power intensity and radius of the middle scalloped section. The results showed that the geometrical effects of the curved target surface greatly influenced residual stress fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bending and reverse bending are the dominant material deformations in roll forming, and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of a roll forming process. Recent investigations have shown that residual stresses change the material behavior close to the yield in a bending test. So, residual stresses introduced during prior steel processing operations may affect the roll forming process, and therefore they need to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is time consuming and has limited accuracy while analytical models that are available require detailed information about the pre-processing conditions that is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that determines a residual stress profile through the material thickness based on experimental pure bend test data. A numerical model of the skin passing (temper rolling) process is performed to introduce a residual stress profile in DP780 steel sheet. The skin passed strips are used in a pure bending simulation to record moment-curvature data and this data is then applied in an inverse analysis to predict the residual stress profile in the material. Comparison of the residual stress profile predicted by the inverse routine with that calculated by finite element analysis (FEA) indicates an inverse approach combined with pure bend test may present an alternative to predict residual stresses in sheet metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al and Mg alloys are widely used in industry as main lightweight alloys. They have excellent properties, such as low density, high ductility, and high specific strength, and so on. Generally speaking, Mg alloys are better than Al alloys. However the corrosion of Mg alloys is much more difficult to control compared Al alloys. Therefore to combine these two lightweight alloys, a composite-like structure is an ideal solution since Al alloys can be used as protective coatings for Mg alloys. Compound casting is a realistic technique to get this coating system. In the current study, we numerically study the compound casting using finite element method (FEM) to make these two alloys, a composite-like structure, satisfy requirements to resist corrosion required from industry, in which the aluminum layer is acting as a protective coating for the magnesium substrate. Several finite element models have been developed by using the birth and death element technique and we focus on compound casting-induced residual stresses in the compounded structure. The numerical results obtained from the proposed finite element models show the distribution profiles of thermal residual stresses. We found the major factors influencing the residual stresses are the temperature to pre-heating the Al substrate and the thickness of Mg deposits. © (2014) Trans Tech Publications, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To combine the merits of both metals and ceramics into one material, many researchers have been studying the deposition of alumina coating using plasma spray on metal substrates. However, as the coatings are deposited at a high temperature, residual thermal stresses develop due to the mismatch of thermal expansion coefficients of the coating and substrate and these are responsible for the initiation and expansion of cracks, which induce the possible failure of the entire material. In this paper, the residual thermal-structural analysis of a Fe3Al/Al2O3 gradient coating on carbon steel substrate is performed using finite element modelling to simulate the plasma spray. The residual thermal stress fields are obtained and analyzed on the basis of temperature fields in gradient coatings during fabrication. The distribution of residual thermal stresses including radial, axial and shear stresses shows stress concentration at the interface between the coatings and substrate. The mismatch between steel substrate and composite coating is still the dominant factor for the residual stresses

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming and sheet materials used in the process are often temper rolled (skin passed), roller- or tension-levelled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behaviour in bending. A thickness reduction rolling process available at Deakin that leads to material deformation similar to an industrial temper rolling operation was used in this study to introduce residual stresses into a dual phase, DP780, steel strip. The initial and thickness reduced strips were then used in a 5-stand experimental V-section roll forming set-up to identify the effect of residual stress on the final shape. The influence of residual stress and the effect of plastic deformation on the material behaviour in roll forming are separately determined in numerical simulation. The results show that the thickness reduction rolling process decreases the maximum bow height while the springback angle and end flare increase. Comparison with experimental results shows that using material data from the conventional tensile test in a numerical simulation does not allow for the accurate prediction of shape defects in a roll forming process if a residual stress profile exists in the material. On the other hand including the residual stress information leads to improved model accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method is presented to determine residual stress distribution in sheet material from data collected in a free bending test. It may be used where the residual stress distribution is symmetrical about the mid-surface as it is usually the case for frequently-used sheet metal post-processing techniques such as skin-pass or temper rolling, tension- and roller leveling. An existing inverse technique is used to obtain a residual stress profile and material constants that provide the best fit in a finite element analysis of bending with the experimentally derived moment-curvature relation. The method is verified for bending of a low-carbon stainless steel using measurement of residual stress by X-ray diffraction. The residual stresses were induced in the sheet by cold rolling. The technique described here can be used industrially as a rapid method of investigating residual stresses in incoming sheet. In processes where the deformation is principally one of bending, such as cold roll forming, it is known that residual stresses have an influence on shape defects and springback and the method presented here can be used to determine whether incoming sheet is suitable for further processing and also as a means of obtaining improved material data input for numerical simulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The drive towards rapid cure thermosetting composites requires a better understanding of the residual stresses that develop during curing. This study investigates the impact of residual stresses on the interlaminar shear strength of resin-infused epoxy/anhydride carbon-fibre laminates. The magnitude of the residual stress was varied by changing the initial injection cure temperature between 75 °C and 145 °C. The corresponding cycle times and the final glass transition temperature of the resin were also measured. The experimentally measured chemical shrinkage and thermal expansion properties of the resin after vitrification were used as inputs to a finite element analysis to calculate the peak residual stresses in the composite. An increase in the initial cure temperature from 85 to 135 °C resulted in an increase of 25% in the residual stress, which led to an experimentally measured reduction in the composite's short beam shear strength of approximately 16% (8 MPa), in good agreement with model prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing.

This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low cost ferrite and bainite(FB) steels offer the prospect of high ultimate tensile strength combined with high hole expansion ratio. The enhanced strain hardening and formabilityof FB steels were primarily associated with the fine ferrite matrix, the low residual stresses and dislocation densityand compatible deformation between both phases.This overview describes the various techniques to produce FB steels, and comparestheresulting microstructure, tensile propertiesand tretchflangeabilitywith conventional HSLA and DP steels.A new generation of ultrafine ferrite and nano-scalebainiteautomotive steelsisunder development forthe futuredemands of extremely high strength and ductilitythroughthe fabricationtechnologiesinvolvingphase transformationsandplastic deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.