75 resultados para Renewable Energy Distribution

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale renewable energy (RE) integration into the distribution network (DN) causes uncertainties due to its intermittent nature and is a challenging task today. In general RE sources are mostly connected near the end user level, i.e., in the low voltage distribution network. RE integration introduces bi-directional power flows across distribution transformer (DT) and hence DN experiences with several potential problems that includes voltage fluctuations, reactive power compensation and poor power factor in the DN. This study identifies the potential effects causes due to large-scale integration of RE into the Berserker Street Feeder, Frenchville Substation under Rockhampton DN. From the model analyses, it has clearly evident that voltage of the Berserker Street Feeder fluctuates with the increased integration of RE and causes uncertainties in the feeder as well as the DN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in in-creased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources for more reliable, effective, sustainable and pollution free transmission and distribution networks. Therefore, to facilitate large-scale integration of renewable energy in particular wind and solar photovoltaic (PV) energy, this paper presents the feasibility analysis for semi-arid climate and finds the most suitable places in North East region of Victoria for re-newable energy generation. For economic and environmental analysis, Hybrid Optimization Model for Electric Re-newables (HOMER) has used to investigate the prospects of wind and solar energy considering the Net Present Cost (NPC), Cost of Energy (COE) and Renewable fraction (RF). Six locations are selected from North East region of Victo-ria and simulations are performed. From the feasibility analysis, it can be concluded that Mount Hotham is one of the most suitable locations for wind energy generation while Wangaratta is the most suitable location for solar energy generation. Mount Hotham is also the best suitable locations in North East region for hybrid power systems i.e., com-bination of both wind and solar energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new distributed multi-agent scheme for reactive power management in smart coordinated distribution networks with renewable energy sources (RESs) to enhance the dynamic voltage stability, which is mainly based on controlling distributed static synchronous compensators (DSTATCOMs). The proposed control scheme is incorporated in a multi-agent framework where the intelligent agents simultaneously coordinate with each other and represent various physical models to provide information and energy flow among different physical processes. The reactive power is estimated from the topology of distribution networks and with this information, necessary control actions are performed through the proposed proportional integral (PI) controller. The performance of the proposed scheme is evaluated on a 8-bus distribution network under various operating conditions. The performance of the proposed scheme is validated through simulation results and these results are compared to that of conventional PI-based DSTATCOM control scheme. From simulation results, it is found that the distributed MAS provides excellence performance for improving voltage profiles by managing reactive power in a smarter way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The penetration of intermittent renewable energy sources (IRESs) into power grids has increased in the last decade. Integration of wind farms and solar systems as the major IRESs have significantly boosted the level of uncertainty in operation of power systems. This paper proposes a comprehensive computational framework for quantification and integration of uncertainties in distributed power systems (DPSs) with IRESs. Different sources of uncertainties in DPSs such as electrical load, wind and solar power forecasts and generator outages are covered by the proposed framework. Load forecast uncertainty is assumed to follow a normal distribution. Wind and solar forecast are implemented by a list of prediction intervals (PIs) ranging from 5% to 95%. Their uncertainties are further represented as scenarios using a scenario generation method. Generator outage uncertainty is modeled as discrete scenarios. The integrated uncertainties are further incorporated into a stochastic security-constrained unit commitment (SCUC) problem and a heuristic genetic algorithm is utilized to solve this stochastic SCUC problem. To demonstrate the effectiveness of the proposed method, five deterministic and four stochastic case studies are implemented. Generation costs as well as different reserve strategies are discussed from the perspectives of system economics and reliability. Comparative results indicate that the planned generation costs and reserves are different from the realized ones. The stochastic models show better robustness than deterministic ones. Power systems run a higher level of risk during peak load hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable energy advocates often invoke the goal of sustainability in order to promote their cause. Most people agree that the energy supply for a sustainable world should be based on safe, clean and renewable forms of energy. However, sustainability is a much over-used word to the point where it has become almost meaningless. This paper argues that we need to reaffirm the meaning of sustainability and use its defining principles to guide our advocacy and practice. If we ignore these principles, we run the danger of generating unrealistic expectations and mistrust, and becoming involved in practice that is questionable from a sustainability perspective. On the other hand, if we use the principles of sustainability to guide our practice and advocacy, our goals will be more achievable, our credibility will increase and our practice will become more ethical. This paper uses one model of sustainability to evaluate examples of renewable energy advocacy and practice.