8 resultados para Reml

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sources of variation in fibre diameter attributes of Australian alpacas and implications for fleece evaluation and animal selection were investigated using data collected in the years 1994–97, from 6 properties in southern Australia. Data were analysed using REML (multiple regression analysis) to determine the effect on mean fibre diameter (MFD) and coefficient of variation of MFD (CV(FD)) of age, origin (property), sex (entire male, female), breed (Huacaya, Suri), liveweight, fibre colour, individual, and interactions of these effects. The mean (n = 100) age (range) was 4.2 years (0.1–11.9), liveweight 72.0 kg (12.0–134 kg), MFD 29.1 μm (17.7–46.6 μm), CV(FD) 24.33% (15.0–36.7%).

A number of variables affected MFD and CV(FD). MFD increased to 7.5 years of age, and correlations between MFD at 1.5 and 2 years of age with the MFD at older ages were much higher than correlations at younger ages. Fibre diameter 'blowout' (increase with age) was positively correlated with the actual MFD at ages 2 years and older. There were important effects of farm, and these effects differed with year and shearing age. Suris were coarser than Huacayas with the effect reducing with increased liveweight; there was no effect of sex. Fleeces of light shade were 1 μm finer than dark fleeces. CV(FD) declined rapidly between birth and 2 years of age, reaching a minimum at about 4 years of age and then increasing; however, CV(FD) measurements on young animals were very poor predictors of CV(FD) at older ages, and the response of CV(FD) to age differed with farm and year. Suris had a higher CV(FD) than Huacayas on most properties, and MFD, liveweight, and sex did not affect CV(FD). Fleeces of dark shade had higher CV(FD) than fleeces of light shade in 2 of the years. It is concluded that there are large opportunities to improve the MFD and CV(FD) of alpaca fibre through selection and breeding. The potential benefit is greatest from reducing the MFD and CV(FD) of fibre from older alpacas, through reducing the between-animal variation in MFD and CV(FD). Sampling alpacas at ages <2 years is likely to substantially decrease selection efficiency for lifetime fibre diameter attributes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presentwork aimed to determine howthe average fibre diameter coefficient of variation (CVD) and fibre curvature (FC) differences between nine sampling sites vary between sex and flock, to identify differences in variability between sampling sites as a result of between animal and between sire variability and to determine correlations between sampling sites in between animal and between sire variability. Australian Angoras (n = 313) from two farms in southern Australia were sampled at 12 and 18 months of age at nine sites (mid side, belly, brisket, hind flank, hip, hock, mid back, neck, shoulder). Staples were taken prior to shearing at skin level and CVD and FC determined. For each shearing, differences in CVD and FC between sampling sites, how these differences were affected by farm, sex, and sire, and the covariance between sites for sire and individual animal effects were investigated by restricted maximum likelihood (REML) analyses. The median mid side CVD at 12 and 18 months of age ranged from 23.6 to 25.1% but the actual range was 16.8–34.2%. The median mid side FC at 12 and 18 months of age ranged from 14.4 to 18.6◦/mm but the actual range was 10.5–26.3◦/mm. The general pattern for CVDwas for the mid back, hip and neck sites to have similar CVD, the brisket, hind flank and hock sites to have larger CVD and the belly to have smaller CVD than the mid side site. The between animal variation for CVD was lowest at the mid back site. This implies that the mid back would be the most effective site for between animal selection for CVD. Heritabilities for CVD (range at 18 months 0.18–0.30) were only about half the heritabilities for mean fibre diameter in the same study. There was a marked anterior–posterior increase in FC at both farms and with both ages. The results give no clear indication of the best site for between animal selection for FC, other than that the hock should be avoided. Heritabilities for FC are moderate to high (range at 18 months 0.44–0.77) and the genetic correlations are high except for the hock. Thus genetic selection for FC at any site, other than the hock, should be effective for changing FC over the entire fleece. There was more variability between animals than between sites and sires. These results are put into context with associated research on variation in mean fibre diameter and staple length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to determine how the average mohair staple length (SL) differences between nine sampling sites vary between sex and flock, to identify differences in SL variability between sampling sites as a result of between-animal and between-sire variability and to determine SL correlations between sampling sites in between-animal and between-sire variability. Australian Angora goats (n=301) from two farms in southern Australia were sampled at 12 and 18 months of age at nine sites (mid side, belly, brisket, hind flank, hip, hock, mid back, neck and shoulder). Staples were taken prior to shearing at skin level and stretched SL determined. For each shearing, differences in SL between sampling sites, how these differences were affected by farm, sex and sire, and the covariance between sites for sire and individual animal effects were investigated by restricted maximum likelihood (REML) analyses. The median mid-side SL at 12 and 18 months of age was 110 and 130 mm, respectively, but the actual range in mid-side SL was 65–165 mm. There was an anterior–posterior decline in SL with the hock being particularly short. There was no evidence that the between-site correlation of the sire effects differed from 1, indicating that genetic selection for SL at one site will be reflected in SL over the whole fleece. However, low heritabilities of SL at the hock, belly and brisket or at any site at 12 months of age were obtained. There was more variability between sites than between sires, but the between-animal variation was greater. The hip and mid-back sites can be recommended for within-flock (culling) and genetic selection for SL due to their low sampling variability, moderate heritability and ease of location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of even a small amount of medullated fibre, in otherwise high quality mohair, may have a pronounced adverse effect on its value and end-use potential. However, there is considerable confusion about the effects, if any, of environmental variables and management upon the incidence of medullated fibres in mohair. This study examined how the incidence of medullated fibres (Med, % by number) is related to the fleece-free live weight (FFLwt) of Angora goats of different genetic origins over their lifetime, and how the relationship varies with other lifetime factors. Measurements were made over 11 shearing periods of 6 months, on a population of Angora goats representing the current range and diversity of genetic origins in Australia, including South African, Texan and interbred admixtures of these and Australian sources. Records of breed, sire, dam, date of birth, dam age, birth weight, birth parity, weaning weight, live weight, fleece growth and fleece quality were taken for castrated males (wethers) (n = 94 animals). A restricted maximum likelihood (REML) model was developed for log10(Med + 1), which allowed the observations of the same animal at different ages to be correlated in an unstructured manner. Med varied between 0.1% and 4.3%. The median average FFLwt during a shearing interval increased from 15 kg at 1 year old to 59 kg at 6 years old. Generally, within each shearing interval, Med increased with increasing average FFLwt. However, the size and shape of the relationship differed greatly between shearing ages. For example, at 3.5 years of age Med increased from about 1.1% at an average FFLwt of 26 kg to 2.6% at 50 kg, whilst at 5.0 years of age Med only changed from 1.4% at 32 kg to 1.6% at 56 kg. Goats with mixed genetic parentage showed an increase in Med at some shearings, particularly at younger ages. Variation in animal nutrition, as measured by live weight change during shearing periods, did not affect Med. The results supplement our earlier findings that mohair mean fibre diameter and clean mohair fleece weight, but not staple length, are greater in larger Angora goats. Live weight needs to be taken into account in genetic evaluation of the incidence of medullated fibres. We conclude that any advantage in handling fewer but larger Angora goats rather than more but smaller goats will come at the detriment of producing lower quality mohair, both in terms of increased Med and mean fibre diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a range of animals, increasing mean fibre diameter (MFD) of fibre is associated with an increasing incidence of medullated fibres (Med). It would thus be expected that Med in mohair fleeces, from animals in a flock, would be related to the MFD of those fleeces. MFD of mohair is not the only dimensional attribute of fibres. Med in mohair is phenotypically and genetically related to the size of animals. This study examined how Med is related to dimensional properties of mohair over the lifetime of Angora goats and how the relationship varies with other lifetime factors. The relationship found is then examined to determine the extent that the relationship can be explained by variations in animal size of the goats. Measurements were made over 11 shearing periods on a population of Angora goats representing the current range and diversity of genetic origins in Australia, including South African, Texan and interbred admixtures of these and Australian sources. Records of breed, sire, dam, date of birth, dam age, birth weight, birth parity, weaning weight, live weight, fleece growth and fleece attributes were taken for castrated males (wethers). Animals’ fleece-free live weight (FFLwt, kg) were determined for each goat at shearing time by subtracting the greasy fleece weight from the live weight recorded immediately prior to shearing. The average of the FFLwt at the start of the period and the FFLwt at the end of the period was calculated. Two restricted maximum likelihood (REML) models were developed to relate Med to MFD, staple length (SL) and other lifetime factors. One model allowed FFLwt in the model and the other excluded FFLwt. With the exception of the 1.5 years shearing, Med strongly increased with increasing MFD whether or not adjustments were made for FFLwt measurements. In particular Med increased by 2.0% for each 1 μm increase in MFD, with no adjustment for FFLwt measurements, and increased by 1.5% for each 1 μm increase in MFD, with adjustment for FFLwt measurements. Within each shearing interval increasing average FFLwt was associated with increasing incidence of Med in a similar way to that which has been previously reported without including MFD in the model. There was no evidence that SL needed to be included in the models for Med. Mohair grown by the goats of Mixed genetic background grew mohair which had a higher incidence of Med at ages 2 and 2.5 years and the trend was apparent in other shearing periods. We can conclude that there is both a large response of Med to live weight and a large response to MFD, and that these responses are largely functionally separate. While the response to MFD is in accord with earlier work, there is an unrelated and unreported physiological mechanism that favours the production of Med in larger Angora goats. Clearly, larger Angora goats are biologically different compared with smaller animals from the same flock, in ways that are not purely related to the allometrics of size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual assessment of the fleece of Merino sheep is an accepted method to aid genetic improvement but there is little evidence to support the use of visual assessment for improving mohair production. This paper examines the extent that visual traits, including staple length, character (staple crimp), staple definition, tippiness, style and staple entanglement, are related to clean fleece weight in animals of similar live weight and mean fibre diameter (MFD) from the same flock. Measurements were made over 9 shearing periods on a population of castrated Angora males (wethers) goats representing the current range and diversity of genetic origins in Australia, including South African, Texan and interbred admixtures of these and Australian sources (these different genetic origins are defined as Breed in this work). Data on genetic origin, sire, dam, lifetime characteristics (date of birth, dam age, birth weight, birth parity (single or twin), weaning weight), live weight, fleece growth and visual fleece attributes were recorded. A restricted maximum likelihood (REML) model was developed to relate clean fleece weight with age, MFD, average fleece-free live weight, lifetime characteristics and visual fleece attributes. There were separate linear responses of clean fleece weight to MFD and staple length for each age group, a quadratic response to the square root of average fleece-free live weight, an effect of sire breed and linear responses to dam age, staple definition score and character. Depending on age at shearing, the increase in clean fleece weight was between about 50 and 80. g for each increase of 1. μm in MFD. At similar MFD, clean fleece weight was generally greater at summer shearings compared with winter shearings. There was a strong increase in clean fleece weight with average fleece-free live weight up to around 50. kg but little response in clean fleece weight for animals larger than 50. kg. There was some evidence of a smaller increase in clean fleece weight as the age of dam increased. There was an effect of Breed in the model but this effect disappeared when a random sire effect was included in the model. There was a positive response to staple length at some age groups but the response did not differ from zero in other age groups. This response varied from negligible to about 70. g per 1. cm increase in staple length. Clean fleece weight increased about 40. g per unit increase in staple definition score and increased about 30. g for every 4 units increase in the number of staple crimps. There was no evidence that clean fleece weight was affected by staple style, staple tip score or staple entanglement score or lifetime factors such as birth weight, date of birth, birth parity, or weaning weight. The results show that using a combination of measuring MFD and visually assessing the fleece for staple length, staple definition and crimps can help identify the most profitable Angora goats. In this process, the objective measurement of MFD appears essential. Visual assessment will provide some extra benefit in identifying these animals above that provided by measuring MFD alone. Animal size should be considered by mohair producers when identifying more productive mohair producing animals. © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staple entanglement in mohair fleeces occurs when adhesions form between longer and faster growing fibres and shorter and slower growing fibres. This results in accentuated crimp of the longer fibres and an "apparently" reduced staple length. The appearance in the fleece of Angora goats of staple entanglements can lead to the downgrading of the mohair to poorer style and shorter length grades, resulting in up to 60% price reductions. This study examined how staple entanglement score (SES) is related to lifetime factors of Angora goats, and how this relationship can be explained by variations in animal size and fleece attributes. SES was scored using a five-point scale: 5, long free fibres easily separated as no adhesions; 4, some adhesions between fibres; 3, some effort to separate fibres as many adhesions; 2, many adhesions, staple fibres entangled, shortening of staple; 1, very entangled and shortened staple. Measurements were made over 9 shearing periods on a population of Angora castrated males (wethers) goats representing the current range and diversity of genetic origins in Australia, including South African, Texan and interbred admixtures of these and Australian sources. Data on genetic origin, sire, dam, date of birth, dam age, birth weight, birth parity, weaning weight, live weight, fleece growth and fleece attributes were recorded. Two restricted maximum likelihood (REML) models were developed to relate SES with age, animal lifetime factors, fleece quality attributes and live weight. One model allowed fleece quality and live weight traits in the model and the other excluded these traits. Staple entanglement was almost eliminated in mohair harvested from goats shorn every 3. months but was common in mohair from goats shorn twice or once per year. SES was less in goats of Texan genetic background, and was generally less in winter grown mohair. SES was higher for mohair with low fibre curvature (FC, 10°/mm) and a high clean washing yield (CWY, 90%) compared with mohair with low FC and lower CWY (80%), and compared with all mohair with high FC (18°/mm). The response of SES to shearing regime, genetic background, shearing season, age of goat and a response to dam age were almost identical whether or not an adjustment was made for CWY and FC. There was a moderate amount of variability due to sires and individuals. We can conclude that a large part of these effects observed, namely breed, dam age, sire, and a component of the FC and CWY effects, are genetic. Mohair producers can manage the genetic effects by careful selection of sires, especially avoiding those with low CWY or high FC, and avoiding sires with higher levels of staple entanglement or that have produced progeny with higher levels of staple entanglement. Also, unidentified environmental effects are affecting staple entanglement, although a lack of a live weight change effect on entanglement indicates that this effect might not be due to nutrition. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mean fibre diameter (MFD) of wool is the primary determinant of price, processing performance and textile quality. This study determines the primary influences on MFD as Saxon Merino sheep age, by allometrically relating MFD to fleece-free liveweight (FFLwt). In total, 79 sheep were grazed in combinations of three stocking rates and two grazing systems (GS: sheep only; mixed with Angora goats) and studied over 3 years. Measurements were made over 14 consecutive periods (Segments), including segments of FFLwt gain or FFLwt loss. Using shearing and liveweight records and dye-bands on wool, the FFLwt and average daily gain (ADG) of each sheep were determined for each segment. The mean and range in key measurements were as follows: FFLwt, 40.1 (23.1 to 64.1) kg; MFD, 18.8 (12.7 to 25.8) μm. A random coefficient restricted maximum likelihood (REML) regression mixed model was developed to relate the logarithm of MFD to the logarithm of FFLwt and other effects. The model can be written in the form of ${\rm MFD}\,{\equals}\,\rkappa \left( {{\rm GS,}\,{\rm A}{\rm ,}\,{\rm Segment}{\rm .Plot,}\,{\rm Segment,}\,{\rm ADG}} \right){\times}{\rm FFLwt}^{{\left( {\ralpha \left( {{\rm GS}} \right){\plus}\rbeta \left(\rm A \right){\plus}\rgamma \left( {{\rm Segment}{\rm .Plot}} \right)} \right)}} $ , where $\ralpha \left( {{\rm GS}} \right)\,{\equals}\,\;\left\{ {\matrix{\!\! {0.32\left( {{\rm SE}\,{\equals}\,{\rm 0}{\rm .038}} \right)\,{\rm when}\,{\rm sheep}\,{\rm are}\,{\rm grazed}\,{\rm alone}} \hfill \cr \!\!\!\!{0.49\left( {{\rm SE}\,{\equals}\,{\rm 0}{\rm .049}} \right)\,{\rm when}\,{\rm sheep}\,{\rm are}\,{\rm mixed}\,{\rm with}\,{\rm goats}} \hfill \cr } } \right.$ β(A) is a random animal effect, γ(Segment.Plot) a random effect associated with Segment.plot combinations, and κ a constant that depends on GS, random animal effects, random Segment.plot combination effects, Segment and ADG. Thus, MFD was allometrically related to the cube root of FFLwt over seasons and years for sheep, but to the square root of FFLwt for sheep grazed with goats. The result for sheep grazed alone accords with a primary response being that the allocation of nutrients towards the cross-sectional growth of wool follicles is proportional to the changes in the skin surface area arising from changes in the size of the sheep. The proportionality constant varied systematically with ADG, and in sheep only grazing, was about 5 when sheep lost 100 g/day and about 6 when sheep gained 100 g/day. The proportionality constant did not systematically change with chronological age. The variation in the allometric coefficient between individual sheep indicates that some sheep were more sensitive to changes in FFLwt than other sheep. Key practical implications include the following: (a) the reporting of systematic increases in MFD with age is likely to be a consequence of allowing sheep to increase in size during shearing intervals as they age; (b) comparisons of MFD between sheep are more likely to have a biological basis when standardised to a common FFLwt and not just to a common age;