14 resultados para Relative intensity

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate correlations between the molecular changes and postcuring reaction on the surface of a diglycidyl ether of bisphenol A and diglycidylether of bisphenol F based epoxy resin cured with two different amine-based hardeners. The aim of this work was to present a proof of concept that ToF-SIMS has the ability to provide information regarding the reaction steps, path, and mechanism for organic reactions in general and for epoxy resin curing and postcuring reactions in particular. Contact-angle measurements were taken for the cured and postcured epoxy resins to correlate changes in the surface energy with the molecular structure of the surface. Principal components analysis (PCA) of the ToFSIMS positive spectra explained the variance in the molecular information, which was related to the resin curing and postcuring reactions with different hardeners and to the surface energy values. The first principal component captured information related to the chemical phenomena of the curing reaction path, branching, and network density based on changes in the relative ion density of the aliphatic hydrocarbon and the C7H7O+ positive ions. The second principal component captured information related to the difference in the surface energy, which was correlated to the difference in the relative intensity of the CxHyNz+ ions of the samples. PCA of the negative spectra provided insight into the extent of consumption of the hardener molecules in the curing and postcuring reactions of both systems based on the relative ion intensity of the nitrogen-containing negative ions and showed molecular correlations with the sample surface energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central composite rotatable design (CCRD) method was used to investigate the performance of the accelerated thermomolecular adhesion process (ATmaP), at different operating conditions. ATmaP is a modified flame-treatment process that features the injection of a coupling agent into the flame to impart a tailored molecular surface chemistry on the work piece. In this study, the surface properties of treated polypropylene were evaluated using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). All samples showed a significant increase in the relative concentration of oxygen (up to 12.2%) and nitrogen (up to 2.4%) at the surface in comparison with the untreated sample (0.7% oxygen and no detectable nitrogen) as measured by XPS. ToF-SIMS and principal components analysis (PCA) showed that ATmaP induced multiple reactions at the polypropylene surface such as chain scission, oxidation, nitration, condensation, and molecular loss, as indicated by changes in the relative intensities of the hydrocarbon (C3H7+ , C3H5+ , C4H7+, and C5H9+), nitrogen and oxygen-containing secondary ions (C2H3O+, C3H8N+, C2H5NO+, C3H6NO+, and C3H7NO+). The increase in relative intensity of the nitrogen oxide ions (C2H5NO+ and C3H7NO+) correlates with the process of incorporating oxides of nitrogen into the surface as a result of the injection of the ATmaP coupling agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate the mixed annihilation electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) with various cyclometalated iridium(iii) chelates. Compared to mixed ECL systems comprising organic luminophores, the absence of T-route pathways enables effective predictions of the observed ECL based on simple estimations of the exergonicity of the reactions leading to excited state production. Moreover, the multiple, closely spaced reductions and oxidations of the metal chelates provide the ability to finely tune the energetics and therefore the observed emission colour. Distinct emissions from multiple luminophores in the same solution are observed in numerous systems. The relative intensity of these emissions and the overall emission colour are dependent on the particular oxidized and reduced species selected by the applied electrochemical potentials. Finally, these studies offer insights into the importance of electronic factors in the question of whether the reduced or oxidized partner becomes excited in annihilation ECL. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P<0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n=13) group [net difference (95% CI), 1.8% (0.2, 3.5), P<0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P<0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n=14) and WLoss (n=12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 ± 3% peak oxygen consumption (VO2 peak) (Lo) or 27 ± 2 min at 83 ± 2% VO2 peak (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 ± 35 mmol/kg dry mass; Hi: 420 ± 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 ± 18 mmol/kg dry mass) compared with Lo (262 ± 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 ± 24 mmol/kg) than in Lo (146 ± 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (~2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 ± 0.7 vs. 1.6 ± 0.3 arbitrary units) and 61% higher in Hi (2.9 ± 0.5 vs. 1.8 ± 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at ~40 and ~80% VO2 peak, with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes  involved in the splitting of the stored phosphagens, ATP and  phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise.

Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast with the prediction of the Heckscher-Ohlin (HO) theorem, Leontief (1953) found that the capital-labor ratio embodied in the US exports is smaller than the capital-labor ratio embodied in the US competitive import replacements. In Leontief's analysis, the measured factor content of US imports is computed based on the assumption that all countries are using the US factor intensity techniques. This paper relaxes all assumption of identical factor intensity techniques. It uses an inferring method to infer the factor intensity techniques of different countries based on international relative factor price differences. With the inferred differentiated factor intensity techniques , the Leontief paradox is re-investigated and is found to be either disappeared or eased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Studies of landscape change are seldom conducted at scales commensurate with the processes they purport to investigate. Landscape change is a landscape-level process, yet most studies focus on patches. Even when landscape context is considered, inference remains at the patch-level. The unit of investigation must be extended beyond individual patches to whole mosaics in order to advance understanding of faunal responses to landscape change.

2. In this study, we aggregated data from multiple sites per landscape such that both the response and explanatory variables characterized 'whole' landscapes, allowing for landscape-level inference about factors influencing species' incidence.

3. We used hierarchical partitioning and Bayesian variable selection methods to develop species-specific models that examined the influence of four categories of landscape properties – habitat extent, habitat configuration, landscape composition and geographical location – on the incidence of 58 species of woodland-dependent birds in 24 agricultural landscapes (each 100 km2) in south-eastern Australia.

4. There was strong evidence for a positive effect of habitat extent for 27 species. Thirty species were related to at least one of the four landscape composition variables, and geographical location was important for 19 species. Habitat configuration was influential for 13 species and where important, the impacts of fragmentation per se were detrimental.

5. Variation among species in the influential landscape variables indicates that different species respond to different sets of cues in land mosaics. Thus, although all species were grouped a priori as 'woodland-dependent', expectations based on general ecological characteristics may prove unreliable.

6. Synthesis and applications. These results underscore the value of moving beyond the fragmentation paradigm focused on the spatial pattern of habitat vs. non-habitat, to a greater appreciation of the composition and heterogeneity of land mosaics. Landscape-level inference will enable improved conservation outcomes by recognizing the influence of landscape properties on biota and devising strategies at this scale to complement patch-based management. We provide strong empirical evidence that biodiversity management in agricultural landscapes must focus on habitat extent. Complementary management of other landscape attributes, such as habitat aggregation and intensity of agricultural land-use, will also enhance the value of agricultural landscapes for woodland birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O2, 111 ± 12 W, 72 ± 3% hypoxia VO2 peak; 72% Hypoxia) or under normoxic conditions (20.9% O2) matched to the same absolute (111 ± 12 W, 51 ± 1% normoxia VO2 peak; 51% Normoxia) or relative (to VO2 peak) intensity (171 ± 18 W, 73 ± 1% normoxia VO2 peak; 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPK{alpha} Thr172 phosphorylation, ACCbeta Ser221 phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time sustained during a graded cycle exercise is ~10% longer in an upright compared with a supine posture. However, during constant-load cycling this effect is unknown. Therefore, we tested the postural effect on the performance of high-intensity constant-load cycling. Twenty-two active subjects (11 men, 11 women) performed two graded tests (one upright, one supine), and of those 22, 10 subjects (5 men, 5 women) performed three high-intensity constant-load tests (one upright, two supine). To test the postural effect on performance at the same absolute intensity, during the upright and one of the supine constant-load tests subjects cycled at 80% of the peak power output achieved during the upright graded test. To test the postural effect on performance at the same relative intensities, during the second supine test subjects cycled at 80% of the peak power output achieved during the supine graded test. Exercise time on the graded and absolute intensity constant-load tests for all subjects was greater (P<0.05) in the upright compared with supine posture (17.9±3.5 vs. 16.1±3.1 min for graded; 13.2±8.7 vs. 5.2±1.9 min for constant-load). This postural effect at the same absolute intensity was larger in men (19.4±8.5 upright vs. 6.6±1.6 supine, P<0.001) than women (7.1±2 upright vs. 3.9±1.4 supine, P>0.05) and it was correlated (P<0.05) with both the difference in VO2 between positions during the first minute of exercise (r=0.67) and the height of the subjects (r=0.72). In conclusion, there is a very large postural effect on performance during constant-load cycling exercise and this effect is significantly larger in men than women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Local destinations have previously been shown to be associated with higher levels of both physical activity and walking, but little is known about how the distribution of destinations is related to activity. Kernel density estimation is a spatial analysis technique that accounts for the location of features relative to each other. Using kernel density estimation, this study sought to investigate whether individuals who live near destinations (shops and service facilities) that are more intensely distributed rather than dispersed: 1) have higher odds of being sufficiently active; 2) engage in more frequent walking for transport and recreation. METHODS: The sample consisted of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Destinations within these areas were geocoded and kernel density estimates of destination intensity were created using kernels of 400m (meters), 800m and 1200m. Using multilevel logistic regression, the association between destination intensity (classified in quintiles Q1(least)-Q5(most)) and likelihood of: 1) being sufficiently active (compared to insufficiently active); 2) walking≥4/week (at least 4 times per week, compared to walking less), was estimated in models that were adjusted for potential confounders. RESULTS: For all kernel distances, there was a significantly greater likelihood of walking≥4/week, among respondents living in areas of greatest destinations intensity compared to areas with least destination intensity: 400m (Q4 OR 1.41 95%CI 1.02-1.96; Q5 OR 1.49 95%CI 1.06-2.09), 800m (Q4 OR 1.55, 95%CI 1.09-2.21; Q5, OR 1.71, 95%CI 1.18-2.48) and 1200m (Q4, OR 1.7, 95%CI 1.18-2.45; Q5, OR 1.86 95%CI 1.28-2.71). There was also evidence of associations between destination intensity and sufficient physical activity, however these associations were markedly attenuated when walking was included in the models. CONCLUSIONS: This study, conducted within urban Melbourne, found that those who lived in areas of greater destination intensity walked more frequently, and showed higher odds of being sufficiently physically active-an effect that was largely explained by levels of walking. The results suggest that increasing the intensity of destinations in areas where they are more dispersed; and or planning neighborhoods with greater destination intensity, may increase residents' likelihood of being sufficiently active for health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of the Global Positioning System (GPS) for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output) GPS device. Reference total distance (13 200 m) was systematically over- and underestimated during curvilinear (2.61±0.80%) and shuttle (-3.17±2.46%) trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99). Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m). Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared the effects of concurrent exercise, incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT), on mechanistic target of rapamycin complex 1 (mTORC1) signaling and microRNA expression in skeletal muscle, relative to resistance exercise (RE) alone. Eight males (mean ± SD: age, 27 ± 4 yr; V̇o2 peak , 45.7 ± 9 ml·kg(-1)·min(-1)) performed three experimental trials in a randomized order: 1) RE (8 × 5 leg press repetitions at 80% 1-repetition maximum) performed alone and RE preceded by either 2) HIT cycling [10 × 2 min at 120% lactate threshold (LT); HIT + RE] or 3) work-matched MICT cycling (30 min at 80% LT; MICT + RE). Vastus lateralis muscle biopsies were obtained immediately before RE, either without (REST) or with (POST) preceding endurance exercise and +1 h (RE + 1 h) and +3 h (RE + 3 h) after RE. Prior HIT and MICT similarly reduced muscle glycogen content and increased ACC(Ser79) and p70S6K(Thr389) phosphorylation before subsequent RE (i.e., at POST). Compared with MICT, HIT induced greater mTOR(Ser2448) and rps6(Ser235/236) phosphorylation at POST. RE-induced increases in p70S6K and rps6 phosphorylation were not influenced by prior HIT or MICT; however, mTOR phosphorylation was reduced at RE + 1 h for MICT + RE vs. both HIT + RE and RE. Expression of miR-133a, miR-378, and miR-486 was reduced at RE + 1 h for HIT + RE vs. both MICT + RE and RE. Postexercise mTORC1 signaling following RE is therefore not compromised by prior HIT or MICT, and concurrent exercise incorporating HIT, but not MICT, reduces postexercise expression of miRNAs implicated in skeletal muscle adaptation to RE.