33 resultados para Receptors, Adrenergic, alpha-2

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) plays a role in the pathogenesis of chronic hepatitis B (CHB) and chronic hepatitis C (CHC). The difference in the cytokine responses between hepatitis B virus (HBV) and hepatitis C virus (HCV) infections may have implications in the pathogenesis of these diseases. We performed a comparative study to examine the possible differences in the TNF-TNF receptor (TNFR) response between CHB and CHC. We studied the cytokine levels of 38 patients with CHB, 40 patients with CHC and 9 patients with dual hepatitis B and C, and compared them with the baseline levels of 12 healthy controls. The plasma levels of TNF-, interferon-, interleukin (IL)-2, IL-4, IL-10 and soluble TNFR-1 and 2 (sTNFR-1 and 2) were quantified by enzyme-linked immunosorbent assays. The expression of TNFR-1 and 2 in liver tissues was examined in 30 cases of CHB and 15 cases of CHC by semiquantitative reverse transcription polymerase chain reaction. The results showed that sTNFR-1 levels correlated with liver inflammation in all patients, whereas this correlation was not found with sTNFR-2 or other cytokines. Liver inflammation indicators were higher in HCV RNA+ than in HCV RNA– CHC. Most significantly, sTNFR-1 levels correlated with liver inflammation in CHB, but not in CHC. However, the expression of TNFR-1 and 2 in liver was similar between CHB and CHC. These findings suggest that the TNFR signal transduction pathway is modulated differently in HBV and HCV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin is an adipocyte-derived hormone associated with antidiabetic actions. In rodent skeletal muscle, globular adiponectin (gAD) activates AMP-kinase (AMPK) and stimulates fatty acid oxidation effects mediated through the adiponectin receptors, AdipoR1 and AdipoR2. In the present study, we examined the mRNA expression of adiponectin receptors and the effects of gAD on AMPK activity and fatty acid oxidation in skeletal muscle myotubes from lean, obese, and obese type 2 diabetic subjects. Myotubes from all groups expressed approximately 4.5-fold more AdipoR1 mRNA than AdipoR2, and obese subjects tended to have higher AdipoR1 expression (P = 0.052). In lean myotubes, gAD activates AMPK[alpha]1 and -[alpha]2 by increasing Thr172 phosphorylation, an effect associated with increased acetyl-coenzyme A carboxylase (ACC[beta]) Ser221 phosphorylation and enhanced rates of fatty acid oxidation, effects similar to those observed after pharmacological AMPK activation by 5-aminoimidazole-4-carboxamide riboside. In obese myotubes, the activation of AMPK signaling by gAD at low concentrations (0.1 [mu]g/ml) was blunted, but higher concentrations (0.5 [mu]g/ml) stimulated AMPK[alpha]1 and -[alpha]2 activities, AMPK and ACC[beta] phosphorylation, and fatty acid oxidation. In obese type 2 diabetic myotubes, high concentrations of gAD stimulated AMPK[alpha]1 activity and AMPK phosphorylation; however, ACC[beta] phosphorylation and fatty acid oxidation were unaffected. Reduced activation of AMPK signaling and fatty acid oxidation in obese and obese diabetic myotubes was not associated with reduced protein expression of AMPK[alpha] and ACC[beta] or the expression and activity of the upstream AMPK kinase, LKB1. These data suggest that reduced activation of AMPK by gAD in obese and obese type 2 diabetic subjects is not caused by reduced adiponectin receptor expression but that aspects downstream of the receptor may inhibit AMPK signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoids, a recently discovered endogenous, lipid derived, signaling system regulating energy metabolism, have effects on central and peripheral energy metabolism predominantly via the cannabinoid receptor type 1 (CB1). CB1 is expressed centrally in the hypothalamus and nucleus accumbens and peripherally in adipocytes and skeletal muscle. This study determined the effect of endocannabinoids on the expression of genes regulating energy metabolism in human skeletal muscle. Primary cultures of myotubes (lean and obese; n = 3/group) were treated with the cannabinoid receptor agonist, anandamide (AEA) (0.2 and 5 μM) and the CB1 specific antagonist AM251 (0.2 and 5 μM) separately and in combination for 24 h. The expression of mRNA for AMP-activated protein kinase (AMPK) alpha 1 (α1) and alpha 2 (α2), pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) were determined using ‘Real Time’ RT-PCR. AMPKα1 mRNA increased in lean and obese myotubes in response to AM251 (P < 0.05). AEA inhibited the effect of AM251 on AMPKα1 mRNA levels in myotubes from lean and obese subjects (P < 0.05); the dose–response curve was shifted to the left in the obese. In response to AM251, irrespective of the presence of AEA, PDK4 expression was decreased in lean and obese myotubes (P < 0.05). Taken together these data suggest that endocannabinoids regulate pathways affecting skeletal muscle oxidation, effects particularly evident in myotubes from obese individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by β-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5′AMP-activated protein kinase (AMPK) to suppress β-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 ± 35 and 163 ± 27 mmol·kg–1 dm for CON and LG, respectively. AMPK α-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 ± 0.13; 60 min: 2.60 ± 0.26 mmol·min–1·kg–1 dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK α-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 ± 0.29 vs LG, 4.25 ± 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 ± 2.0; 60 min: 22.5 ± 2.0 mmol.kg–1 dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override β-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ovarian cancer is characterized by a wide-spread intra-abdominal metastases which represents a major clinical hurdle in the prognosis and management of the disease. A significant proportion of ovarian cancer cells in peritoneal ascites exist as multicellular aggregates or spheroids. We hypothesize that these cellular aggregates or spheroids are invasive with the capacity to survive and implant on the peritoneal surface. This study was designed to elucidate early inherent mechanism(s) of spheroid survival, growth and disaggregation required for peritoneal metastases.

Methods: In this study, we determined the growth pattern and adhesive capacity of ovarian cancer cell lines (HEY and OVHS1) grown as spheroids, using the well established liquid overlay technique, and compared them to a normal ovarian cell line (IOSE29) and cancer cells grown as a monolayer. The proteolytic capacity of these spheroids was compared with cells grown as a monolayer using a gelatin zymography assay to analyze secreted MMP-2/9 in conditioned serum-free medium. The disaggregation of cancer cell line spheroids was determined on extracellular matrices (ECM) such as laminin (LM), fibronectin (FN) and collagen (CI) and the expression of α2, α3, αv, α6 and β1 interin was determined by flow cytometric analysis. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin was used to inhibit disaggregation as well as activation of MMPs in spheroids.

Results: We demonstrate that ovarian cancer cell lines grown as spheroids can sustain growth for 10 days while the normal ovarian cell line failed to grow beyond 2 days. Compared to cells grown as a monolayer, cancer cells grown as spheroids demonstrated no change in adhesion for up to 4 days, while IOSE29 cells had a 2–4-fold loss of adhesion within 2 days. Cancer cell spheroids disaggregated on extracellular matrices (ECM) and demonstrated enhanced expression of secreted pro-MMP2 as well as activated MMP2/MMP9 with no such activation of MMP's observed in monolayer cells. Flow cytometric analysis demonstrated enhanced expression of α2 and diminution of α6 integrin subunits in spheroids
versus monolayer cells. No change in the expression of α3, αv and β1 subunits was evident. Conversely, except for αv integrin, a 1.5–7.5-fold decrease in α2, α3, α6 and β1 integrin subunit expression was observed in IOSE29 cells within 2 days. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin inhibited disaggregation as well as activation of
MMPs in spheroids.

Conclusion: Our results suggest that enhanced expression of α2β1 integrin may influence spheroid disaggregation and
proteolysis responsible for the peritoneal dissemination of ovarian carcinoma. This may indicate a new therapeutic target
for the suppression of the peritoneal metastasis associated with advanced ovarian carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the actions of 17β-estradiol (E2) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPARα and PPARγ) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically,
carnitine palmitoyltransferase I (CPT I), β-3-hydroxyacyl CoA dehydrogenase (β-HAD), and pyruvate dehydrogenase kinase 4 (PDK4) were examined. Sprague–Dawley rats were ovariectomized and treated with placebo (Ovx), E2, progesterone, or both hormones in combination (E+P). Additionally,
sham-operated rats were treated with placebo (Sham) to serve as controls. Hormone (or vehicle only) delivery was via time release pellets inserted at the time of surgery, 15 days prior to analysis. E2 treatment increased PPARα mRNA expression and protein content (P<0·05), compared with Ovx treatment. E2 also resulted in upregulated mRNA of CPT I and PDK4 (P<0·05). PPARγ mRNA expression was also increased (P<0·05) by E2 treatment, although protein content remained unaltered. These data
demonstrate the novel regulation of E2 on PPARα and genes encoding key proteins that are pivotal in regulating skeletal muscle lipid oxidative flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sialic acids (SA) usually linked to galactose (Gal) in an α2,6- or α2,3-configuration are considered the main cell receptors for influenza viruses, in particular for their hemagglutinins (HA). The typing of influenza virus HA receptor selectivity is relevant for understanding the transmissibility of avian and swine viruses to the human population. In this study we developed a simple and inexpensive gel-capture assay (GCA) of the influenza virus HA receptor-binding selectivity. Its principle is the binding of soluble influenza virus to pentasaccharide analogs, representatives of receptors of human and avian influenza viruses, immobilized on a gel resin. The human and avian analogs consisted of a sialyllactose-N-tetraose c (LSTc) [Neu5Ac(α2,6)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc] and a sialyllactose-N-tetraose a (LSTa) [Neu5Ac(α2,3)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc], respectively. Following equilibration, the unbound virus is washed away and the bound one is assayed via HA by densitometry as a function of the analog concentration. Using GCA, the receptor selectivity of three influenza viruses of different HA subtype was investigated. The results showed that the egg-adapted A/California/07/2009 (H1N1) virus exhibited an avian α2,3-linked LSTa selectivity, however, it retained the ability to bind to the α2,6-linked LSTc human receptor analog. Influenza B virus B/Florida/4/2006 showed α2,6-linked LSTc selectivity and a poor α2,3-linked LSTa avidity. The H3N2 virus A/Wisconsin/15/2009 displayed almost comparable avidity for both receptor analogs with a marginally greater α2,3-linked LSTa avidity. The described assay protocol provides a simple and rapid method for the characterization of influenza virus HA receptor binding selectivity. Keywords: influenza virus; hemagglutinin; receptor; sialyllactose-N-tetraose; gel-capture assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotavirus replication occurs in vivo in intestinal epithelial cells. Cell lines fully permissive to rotavirus include kidney epithelial (MA104), colonic (Caco-2) and hepatic (HepG2) types. Previously, it has been shown that cellular integrins α2β1, α4β1 and αXβ2 are involved in rotavirus cell entry. As receptor usage is a major determinant of virus tropism, the levels of cell surface expression of these integrins have now been investigated by flow cytometry on cell lines of human (Caco-2, HepG2, RD, K562) and monkey (MA104, COS-7) origin in relation to cellular susceptibility to infection with monkey and human rotaviruses. Cells supporting any replication of human rotaviruses (RD, HepG2, Caco-2, COS-7 and MA104) expressed α2β1 and (when tested) αXβ2, whereas the non-permissive K562 cells did not express α2β1, α4β1 or αXβ2. Only RD cells expressed α4β1. Although SA11 grew to higher titres in RD, HepG2, Caco-2, COS-7 and MA104 cells, this virus still replicated at a low level in K562 cells. In all cell lines tested, SA11 replicated to higher titres than did human strains, consistent with the ability of SA11 to use sialic acids as alternative receptors. Levels of cell surface α2 integrin correlated with levels of rotavirus growth. The α2 integrin relative linear median fluorescence intensity on K562, RD, COS-7, MA104 and Caco-2 cells correlated linearly with the titre of SA11 produced in these cells at 20 h after infection at a multiplicity of 0·1, and the data best fitted a sigmoidal dose–response curve (r2=1·00, P=0·005). Thus, growth of rotaviruses in these cell lines correlates with their surface expression of α2β1 integrin and is consistent with their expression of αXβ2 and α4β1 integrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative symptoms of schizophrenia remain a major clinical challenge. Mirtazapine is an antidepressant with antagonist properties at 5-HT2A, 5-HT3 and alpha 2 receptors as well as indirect 5-HT1a agonist effects. Many of these pharmacological actions have clinical or preclinical evidence of efficacy in schizophrenia. This study was a 6-week randomized placebo-controlled trial of mirtzepine or placebo add on to haloperidol 5 mg in the treatment of 30 patients with DSM-IV schizophrenia. The primary finding of the trial was a 42% reduction in Positive and Negative Syndrome Scale (PANSS) negative symptom scores in the mirtazapine group compared to placebo at the end of 6 weeks (mirtazapine 13.9, SD 1.56; placebo 23.9, SD 1.56; P = 0.000, F = 20.31, d.f. = 1). The PANNS total scores, Clinical Global Impression severity and improvement scales in addition showed superiority of mirtazapine over placebo. There was no difference between the groups on the Hamilton depression scale at endpoint, suggesting that the improvement in negative symptoms was not an artifact of mood improvement. These results suggest a potential role for mirtazapine in the negative symptoms of schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, adrenomedullin (AM) is a potent vasodilator through signalling pathways that involve the endothelium. In teleost fishes, a family of five AMs are present (AM1/4, AM2/3 and AM5) with four homologous AMs (AM1, AM2/3 and AM5) recently cloned from the Japanese eel, Anguilla japonica. Both AM2 and AM5 have been shown to be strong in vivo vasodepressors in eel, but the mechanism of action of homologous AMs on isolated blood vessels has not been examined in teleost fish. In this study, both eel AM2 and AM5 caused a marked vasodilation of the dorsal aorta. However, only AM5 consistently dilated the small gonadal artery in contrast to AM2 that had no effect in most preparations. Neither AM2 nor AM5 had any effect when applied to the first afferent branchial artery; in contrast, eel ANP always caused a large vasodilation of the branchial artery. In the dorsal aorta, indomethacin significantly reduced the AM2 vasodilation, but had no effect on the AM5 vasodilation. In contrast, removal of the endothelium significantly enhanced the AM5 vasodilation only. In the gonadal artery, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) significantly reduced the AM5 vasodilation suggesting a role for soluble guanylyl cyclase in the dilation, but l-NNA and removal of the endothelium had no effect. The results of this study indicate that AM2 and AM5 have distinct vasodilatory effects that may be due to the peptides signalling via different receptors to regulate vascular tone in eel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-electron reduction of [α2-FeIII(OH2)P2W17O61]7- at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45−7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e- ↔ Q (E10/ = −0.275 V, k10/ = 0.008 cm s-1, and α1 = 1/2), PH+ + e- ↔ QH+ (E20/ = −0.036 V, k20/ = 0.014 cm s-1, and α2 = 1/2), PH+ ↔ P + H+ (KP = 3.02 × 10-6 M), and QH+ ↔ Q + H+ (KQ = 2.35 × 10-10 M), where P, Q, PH+, and QH+ correspond to [α2-FeIII(OH)P2W17O61]8-, [α2-FeII(OH)P2W17O61]9-, [α2-FeIII(OH2)P2W17O61]7-, and [α2-FeII(OH2)P2W17O61]8-, respectively; E10‘ and E20‘ are the formal potentials, k10‘ and k20‘ are the formal (standard) rate constants, and KP and KQ are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that α1 = α2, can be well-described by the behavior of a simple redox couple, ox + e- ↔ red, whose formal potential, Eapp0‘, and standard rate constant, kapp0‘, are straightforwardly derived functions of pH, as are the values of E10‘, k10‘, E20‘, k20‘, and KP (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that αapp = 1/2, and the simulation program DigiSim was used to determine the values of Eapp0‘ and kapp0‘, which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid−base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E10‘ and k10‘; KQ was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H2O. The value of the diffusion coefficient of the [α2-FeIII(OH2)P2W17O61]7-, 2.92 × 10-6 cm2 s-1, was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [α2-FeIII(OH)P2W17O61]8-) led to the loss of the reactant and precluded lengthy experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE: Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.