48 resultados para Rare-earth exchanged zeolite-Y

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preliminary study showed that the inhibitor lanthanum 4-hydroxy cinnamate ((La4OHcin)3) at a concentration of 400 ppm prevented the hydrogen embrittlement (HE) of SAE 4340 steel tensile specimens when tested under slow strain rate conditions in a 0.01M NaCl. In the presence of the inhibitor, a complex film formed on the surface of specimens during the slow strain rate test (SSRT), and no corrosion pits were detected. Electrochemical polarization studies indicated that the La(4OHcin)3 acted as an anodic inhibitor in the NaCl solution. This article also discusses the mechanism of HE inhibition by La(4OHcin)3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anhydrous rare earth tris(cinnamates) [RE(cinn)3] (RE = La–Lu, Y and Sc and cinnH = trans-cinnamic acid) were prepared by metathesis in water and by direct reaction of the metal with cinnamic acid in a 1,2,4,5-tetramethylbenzene flux at ca. 200 °C. X-ray crystal structure determinations and X-ray powder data show that, in the solid state, the larger lanthanoids (La–Dy) form an isomorphous polymeric series consisting of homoleptic nine-coordinate metal centres bonded to three chelating and bridging tridentate cinnamates. The late REIII cinnamate (RE = Dy, Ho–Lu, Y) complexes also form linear one-dimensional polymeric chains with all RE metal atoms being seven-coordinate. The cinnamates are either bound tridentate bridging in a μ-η2:η1 fashion, or μ-η1:η1syn-syn bidentate bridging. A structural break occurs at dysprosium which has been characterised in both crystallographic forms, and gives solely the late RE form when precipitated at 80 °C. ScIII cinnamate was also isolated as an analytically pure precipitate which was, again, found to be anhydrous in nature. A structural change was identified by powder XRD between the late REIII cinnamates and ScIII cinnamate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extrusion behaviour, texture and tensile ductility of five binary Mg-based alloys have been examined and compared to pure Mg. The five alloying additions examined were Al, Sn, Ca, La and Gd. When these alloys are compared at equivalent grain size, the La- and Gd-containing alloys show the best ductilities. This has been attributed to a weaker extrusion texture. These two alloying additions, La and Gd, were found to also produce a new texture peak with View the MathML source parallel to the extrusion direction. This “rare earth texture” component was found to be suppressed at high extrusion temperatures. It is proposed that the View the MathML source texture component arises from oriented nucleation at shear bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of alloys have been produced with microalloying additions of rare-earth (RE) elements in the range of 0.1–0.4 wt.%. The alloys have been extruded to produce grain sizes of 23 ± 5 μm. The texture of the extruded alloys was measured, and it was found that the extrusion texture was weakened by the addition of RE elements. The samples with weakened extrusion textures exhibited an increase in the tensile elongation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of linear polarisation resistance (LPR) and cyclic potentiodynamic polarisation (CPP) measurements demonstrated that the lanthanum-4 hydroxy cinnamate compound could inhibit both the cathodic and anodic corrosion reactions on mild steel surfaces exposed to 0.01 M NaCl solutions. However, the dominating response was shown to vary with inhibitor concentration. At the concentrations for which the highest level of protection was achieved, both REM-4 hydroxy cinnamate (REM being lanthanum and mischmetal) displayed a strong anodic behaviour for mild steel and their inhibition performance, including their resistance against localised attack, improved with time.

Electrochemical impedance spectroscopy (EIS) measurements and modelling were carried out so as to propose a simple electrical model and correlate the extracted parameters to the inhibition mechanism put forward for REM-cinnamate based compounds. The results supported the high corrosion inhibition performance of the compounds as well as the build-up of a protective film with time. Based on a two-layer model the results suggested that the upper layer of the inhibitor film seemed to offer less resistance to the diffusion of electrochemically active species than the highly resistive inner layer at the film/metal interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion rate measurements based on weight loss (i.e., mild steel immersed for seven days in 0.01 M NaCl) and linear polarization resistance (LPR) techniques have shown that even low concentrations (200 ppm) of cerium and lanthanum cinnamates are able to significantly inhibit corrosion. Of all the compounds investigated in this work Ce(4-methoxycinnamate)3· 2 H2O and La(4-methoxycinnamate)3· 2 H2O compounds exhibited the greatest inhibition and, in comparison with the component inhibitors, a synergy was clearly observed. The mechanism of corrosion inhibition was investigated using cyclic potentiodynamic polarization (CPP) measurements. The results suggest that La(4-nitrocinnamate)3· 2 H2O and Ce(4-methoxycinnamate)3· 2 H2O behave as mixed inhibitors and improve the resistance of steel against localized attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four structural classes have been established for rare earth anthranilates, which have been prepared from the lanthanoid chloride or triflate and anthranilic acid (anthH) followed by pH adjustment to 4. [La(anth)3]n is a polymeric complex with nine coordinate lanthanum and bridging tridentate (O,O,O′) anthranilate ligands, whereas [Nd(anth)3(H2O)3] · 3H2O is monomeric with nine coordinate neodymium and solely chelating (O,O) anthranilate groups. Both chelating (O,O) and bridging bidentate (O,O′) ligands are observed in dimeric [Er2(anth)6(H2O)4] · 2H2O, in which erbium is eight coordinate and the water ligands are in a trans arrangement. A polymer is observed for [Yb(anth)3(H2O)]n with solely bridging bidentate (O,O′) ligands and seven coordination for ytterbium. The NH2 groups of the anthranilate ligands are not coordinated to the metal but is unusually involved in hydrogen-bond networks with water molecules for Ln = Er, Yb.