2 resultados para Ranitidine

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine if taste interactions occur when bitter stimuli are mixed. Eight bitter stimuli were employed: denatonium benzoate (DB), quinine-HCl (QHCl), sucrose octaacetate (SOA), urea, L-tryptophan (L-trp), L-phenylalanine (L-phe), ranitidine-HCl, and Tetralone. The first experiment constructed individual psychophysical curves for each subject (n = 19) for each compound to account for individual differences in sensitivities when presenting bitter compounds in experiment 2. Correlation analysis revealed two groupings of bitter compounds at low intensity (1, L-trp, L-phe, and ranitidine; 2, SOA and QHCl), but the correlations within each group decreased as the perceived intensity increased. In experiment 2, intensity ratings and two-alternative forced-choice discrimination tasks showed that bitter compounds generally combine additively in mixture and do not show interactions with a few specific exceptions. The methods employed detected synergy among sweeteners, but could not detect synergy among these eight bitter compounds. In general, the perceived bitterness of these binary bitter-compound mixtures was an additive function of the total bitter-inducing stimuli in the mouth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. NaCl has proven to be an effective bitterness inhibitor, but the reason remains unclear. The purpose of this study was to examine the influence of a variety of cations and anions on the bitterness of selected oral pharmaceuticals and bitter taste stimuli: pseudoephedrine, ranitidine, acetaminophen, quinine, and urea.
Method. Human psychophysical taste evaluation using a whole mouth exposure procedure was used.
Results. The cations (all associated with the acetate anion) inhibited bitterness when mixed with pharmaceutical solutions to varying degrees. The sodium cation significantly (P < 0.003) inhibited bitterness of the pharmaceuticals more than the other cations. The anions (all associated with the sodium cation) also inhibited bitterness to varying degrees. With the exception of salicylate, the glutamate and adenosine monophosphate anions significantly (P < 0.001) inhibited bitterness of the pharmaceuticals more than the other anions. Also, there were several specific inhibitory interactions between ammonium, sodium and salicylate and certain pharmaceuticals.
Conclusions. We conclude that sodium was the most successful cation and glutamate and AMP were the most successful anions at inhibiting bitterness. Structure forming and breaking properties of ions, as predicted by the Hofmeister series, and other physical-chemical ion properties failed to significantly predict bitterness inhibition.