16 resultados para Railway systems - Fatigue crack

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure, fatigue crack growth behaviour and hardness of ultra fine grained 6061 aluminium alloy obtained by equal angle channel processing was studied. ECAP resulted in significant grain refinement down to the sub micron level and corresponding increase in hardness. Results point to a similar fatigue threshold stress intensity range and fatigue crack growth rates for 1, 2, 4 and 6 passes of ECAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electron backscatter diffraction (EBSD) study of the microstructure of TRIP steel during fatigue failure. Phase and crystal orientation study of a TRIP steel subjected to cyclic load induced fatigue. The relative fractions of austenite, ferrite and martensite are quantified within the strain field of a fatigue crack tip. This data is a subset of data supporting a wider study of the fatigue properties of multiphase steels used in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) and scanning electron microscopy (SEM-EBSD) used to examine the deformed microstructures .

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AA2024-Tx is one of the most common high-strength aluminium alloys used in the aerospace industry. This article reviews current understanding of the microstructure of sheet AA2024-T3 and chronicles the emergence of new compositions for constituent particles as well as reviews older literature to understand the source of the original compositions. The review goes on to summarise older and more recent studies on corrosion of AA2024-T3, drawing attention to areas of corrosion initiation and propagation. It pays particular attention to modern approaches to corrosion characterisation as obtained through microelectrochemical techniques and physicochemical characterisation, which provide statistical assessment of factors that contribute to corrosion of AA2024. These approaches are also relevant to other alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser beam spot-welding is widely applied to join sheet metals for automotive components especially for thinsheet components in automotive industries. The spot welds in such metallic structures contribute a lot to the integrated strength and fatigue life for the whole structures and they are responsible for their damage or collapse in some loading cases. In this paper, the 2-D hybrid special finite elements each containing an edge crack are employed to study the fracture behaviors of laser beam spot-welds. Hence the calculation accuracy in the vicinity of crack tips is ensured, and a better description of stress singularity with only one hybrid element surrounding one crack is provided. The numerical modeling for laser beam spot-welds subjected to three typical modes ofloadings including tension-lap, shear-lap and angle-clip can be greatly simplified with the applications of such elements. Three specimens under lap-shear, lap-tension and angle clip are devised and analyzed respectively, and main fracture parameters such as stress intensity factors and the initial direction of crack growth are obtained through tinite element analyses. The computed results ti'om numerical examples demonstrate the validity and versatility of the proposed modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new concept of counting time at fatigue processes is proposed, aimed to reach fractographic compatibility in cases of different loading sequences. Values of cycle effectivity are summarized to give the new reference time. The improvement is shown in application - textural fractography of three specimens loaded by constant cycle, constant cycle with periodic overloading, and a random block, respectively. In contrast to the conventional crack growth rate, the reference crack growth rate is related to common morphologic features of all fracture surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reference features of a fatigue fracture surface are the reference texture and reference crack growth rate which are unambiguously mutually related. The reference texture is a subset of the image texture in SEM fractographs. It is expected to be common to all fractures caused by loadings in which significant events occur sufficiently regularly and frequently. The ratio of the reference and the conventional crack growth rate called reference factor is a characteristic of a particular loading. Its value may be related to the sequence of successive sizes of the cyclic plastic zone, while the mechanism of the effect of overloads follows the models of Wheeler and Willenborg. Application to a set of nine test specimens from aluminium alloy loaded by three different loading regimes is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: This study investigates the associations between railway suicide and neighborhood social, economic, and physical determinants using postcode-level data. It also examines whether the associations are influenced by having high concentration of high-risk individuals in a neighborhood area. METHODS: Railway suicide cases from Victoria, Australia for the period of 2001-2012, their age, sex, year of death, usual residential address and suicide location were obtained from the National Coronial Information System. Univariate negative binomial regression models were used to estimate the association between railway suicide and neighborhood-level social, economic and physical factors. Variables which were significant in these univariate models were then assessed in a multivariate model, controlling for age and sex of the deceased and other known confounders. RESULTS: Findings from the multivariate analysis indicate that an elevated rate of railway suicide was strongly associated with neighborhood exposure of higher number of railway stations (IRR=1.30 95% CI=1.16-1.46). Other significant neighborhood risk factors included patronage volume (IRR=1.06, 95% CI=1.02-1.11) and train frequency (IRR=1.02, 95% CI=1.01-1.04). An increased number of video surveillance systems at railway stations and carparks was significantly associated with a modest reduction in railway suicide risk (IRR=0.93, 95% CI=0.88-0.98). These associations were independent of concentration of high-risk individuals. LIMITATIONS: Railway suicide may be under-reported in Australia. CONCLUSIONS: Interventions to prevent railway suicide should target vulnerable individuals residing in areas characterized by high station density, patronage volume and train frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.