8 resultados para Railroad gauges

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Email overload is a recent problem that there is increasingly difficulty people have faced to process the large number of emails received daily. Currently this problem becomes more and more serious and it has already affected the normal usage of email as a knowledge management tool. It has been recognized that categorizing emails into meaningful groups can greatly save cognitive load to process emails and thus this is an effective way to manage email overload problem. However, most current approaches still require significant human input when categorizing emails. In this paper we develop an automatic email clustering system, underpinned by a new nonparametric text clustering algorithm. This system does not require any predefined input parameters and can automatically generate meaningful email clusters. Experiments show our new algorithm outperforms existing text clustering algorithms with higher efficiency in terms of computational time and clustering quality measured by different gauges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although importance of situational influences on consumer behaviour has been recognised for some time, little research has been conducted into their effects on hospitality retailing. Over the past decade the Irish theme pub sector has enjoyed extensive growth, which recent studies attribute to the situational components inherent within the environment. This study identities and evaluates the situational components that influence consumers within Irish theme pubs and gauges impact of each of the dimensions of an established situational model on customer behaviour using gender and age cohorts. A three phase, mixed method research design was used and respondents were selected from six Irish theme pubs in Melbourne. The study found that both physical and social situational components have a significant influence in attracting, serving and satisfying the needs of consumers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of a new automotive wheel requires extensive testing and possible design changes. The wheel investigated had three major changes during development. These three designs were subjected to a stress analysis, by experimental methods, to allow a comparison to be made between each design. The experimental program tested the wheels under conditions designed to simulate the loading of the front wheels whilst cornering. A loading frame was built for this purpose and all testing was performed statically by multiple loading for different directions of bending moment. Brittle lacquer coatings were used on each wheel to highlight high strain areas and indicate optimum locations for the placement of strain gauges. The strain gauges were then used to evaluate the strains. Wheel stud loads were also monitored via strain gauges applied to two of the wheel studs. All data was stored on magnetic tapes and the stress analysis performed by means of a minicomputer. The results of the stress analysis showed quantitatively the improvement in design from the first to the third wheel design. The analysis of the stud loads and their variation during loading indicated the optimum wheel mounting face geometry to ensure nut loosening would not occur in service.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced high strength steels (AHSS), in particular, are an attractive group materials, offering higher strength for improved energy absorption and the opportunity to reduce weight through the use of thinner gauges. High pressure tube hydroforming (HPTH) has been used to produce safety components for these steels, but it is expensive. Low pressure tube hydroforming (LPTH) is a lower cost alternative to form the safety components in the car. The side intrusion beam is the second most critical part after front rail in the car structure for passenger safety during crash. The forming as well as crash behaviour of a square side intrusion beam from both processes was investigated using numerical simulation. This paper investigated the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses compared for both hydroforming process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a method of improving level of service in congested urban railways by means of a triple-track line operation for a highly dense urban area with special travel demand characteristics. Where the future travel demand forecasts show sluggish growth or no growth at all, there is little to no incentives for heavy railway investments like quadruple-track extension and construction of new railway routes to alleviate current railway congestion problems. In such a situation, triple-track line operation can be the best alternative due to its moderate investment cost and ease in land acquisition for just an additional single track along the existing tracks. Our simulation investigation in one of the congested railway lines in Tokyo showed that triple track line operation increases railway capacity by 26% and shortens travel time by 38% in peak direction during morning peak hours. These results are encouraging and are useful for removing current railways problems in Tokyo and in similar urban situations elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

V-sections were roll formed from two grades of steel, and the strain on the top and bottom of the strip near the edge was measured using electrical resistance strain gauges. The channels were bent to a radius of 2 and 15 mm along the centerline. The steel strips were of mild and dual phase steel of yield strength 367 MPa and 597 MPa respectively. The longitudinal bow was measured using a 3-dimensional scanning system. The strain measurements were analysed to determine bending and mid-surface strains at the edge during forming. The peak longitudinal edge strain increased with material yield strength for both profile radii. For the 15 mm radius, the bow was larger in the dual phase steel than in the mild steel. For the 2 mm profile radius, the bow was smaller compared with the 15 mm profile radius and it was similar for both steels. It was observed that the difference between the peak longitudinal edge strain and yield strength to Youngs modulus ratio of the material is an important factor in determining longitudinal bow.