57 resultados para Radio-frequency power

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tariq worked in the area of electronic textiles. He coated polyester fabric and PVDF films with polypyrrole. Plasma treatment was used to improve binding of coatings over the surface. He investigated in detail, the factors responsible for adhesion improvement using XPS, AFM, SEM, contact angle, abrasion tests and conductivity measurements. Different plasma gases, plasma power and plasma modes were investigated to get optimum bonding data. His investigations pointed towards improved surface oxygen functionalization and suitable surface morphology for improved bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification Technology (RFIO) has been explored for various process enhancements in clinical contexts, particularly hospitals, for asset tracking. The technology has been accepted in such environments, as it is inexpensive and, in principle, uncomplicated to integrate with other clinical support systems. It is perceived to offer many benefits to currently resource critical/strained clinical environments. This research investigation focuses on the exploitation of the potential of the technology, to enhance processes in clinical environments. In this paper, the researchers aimed to uncover if the technology, as presently deployed, has been able to achieve its potential and, in particular, if it has been fully integrated into processes in a way that maximises the benefits that were perceived. This research is part of a larger investigation that aims to develop a meta-model for integration of RFIO into processes in a form that will maximise benefits that may be achievable in clinical environments. As the first phase of the investigation, the key learning from a clinical context (hospital), which has deployed RFIO and attempted to integrate it into the processes, to enable better efficiencies, is presented in this paper. The case method has been used as a methodological framework. Two clinical contexts (hospitals) are involved in the larger project, which constitutes two phases. In Phase 1, semi structured interviews were conducted with a selected number of participants involved with the RFIO deployment project, before and after, in clinical context 1 (hereinafter named as CCl). The results were then synthesised drawing a set of key learning, from different viewpoints (implementers and users), as reported in this paper. These results outline a linear conduit for a new proposed implementation (CC2). On completion of the phase II, the researchers aim to construct a meta-model for maximising the potential of RFIO in clinical contexts. This paper is limited to the first phase that aims to draw key learning to inform the linear conduit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification is a radical technology that is being experimented in hospitals commonly for tracking high value equipment, in order to maximize the efficiency of processes. RFID deployment and integration is mostly vendor and business driven, and hence its potential is not maximized. In this chapter, we propose a strategic framework to develop a process model, that will assist in maximizing the potential of RFID in hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter the authors discuss the physical insight of the role of wireless communication in RFID systems. In this respect, this chapter gives a brief introduction on the wireless communication model followed by various communication schemes. The chapter also discusses various channel impairments and the statistical modeling of fading channels based on the environment in which the RFID tag and reader may be present. The chapter deals with the fact that the signal attenuations can be dealt with up to some level by using multiple antennas at the reader transmitter and receiver to improve the performance. Thus, this chapter discusses the use of transmit diversity at the reader transmitter to transmit multiple copies of the signal. Following the above, the use of receiver combining techniques are discussed, which shows how the multiple copies of the signal arriving at the reader receiver from the tag are combined to reduce the effects of fading. The chapter then discusses various modulation techniques required to modulate the signal before transmitting over the channel. It then presents a few channel estimation algorithms, according to which, by estimating the channel state information of the channel paths through which transmission takes place, performance of the wireless system can be further increased. Finally, the Antenna selection techniques are presented, which further helps in improving the system performance.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvement of the binding of polypyrrole with PVDF (polyvinylidene fluoride) thin film using low pressure plasma was studied. The effects of various plasma gases i.e., Ar, O2 and Ar + O2 gases on surface roughness, surface chemistry and hydrophilicity were noted. The topographical change of the PVDF film was observed by means of scanning electron microscopy and chemical changes by X-ray photoelectron spectroscopy, with adhesion of polypyrrole (PPy) by abrasion tests and sheet resistance measurements. Results showed that the increase in roughness and surface functionalization by oxygen functional groups contributed to improved adhesion and Ar + O2 plasma gave better adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3rd generation partnership project (3GPP) long term evolution (LTE) standard uses single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions and orthogonal frequency division multiplexing access (OFDMA) in downlink. SCFDMA uses DFT spreading prior to OFDMA modulation to map the signal from each user to a subset of the available subcarriers i.e., single carrier modulation. The efficiency of a power amplifier is determined by the peak to average power ratio (PAPR) of the modulated signal. In this paper, we analyze the PAPR in 3GPP LTE systems using root raised cosine based filter. Simulation results show that the SCFDMA subcarrier mapping has a significantly lower PAPR compared to OFDMA. Also comparing the three forms of SCFDMA subcarrier mapping, results show that interleave FDMA (IFDMA) subcarrier mapping with proposed root raised cosine filter reduced PAPR significantly than localized FDMA (LFDMA) and distributed (DFDMA) mapping. This improves its radio frequency (RF) power amplifier efficiency and also the mean power output from a battery driven mobile terminal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radio Frequency Identification (RFlD) technology is increasingly being explored for deployment in hospitals to improve their existing processes. In recent years, RPID pilots has lead to full scale implementation in hospitals, especially for tracking of expensive equipment as well as movable assets that are critical in surgeries. However, academic research is yet to emerge with a generic process model that can be adapted contextually for deployment of RPID in particular hospital settings. In this paper, we propose an action research framework for a pilot implementation of RPID in a large Indian hospital, the experiences of which will contribute to and result, in the development of such a process model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study is to design a low-cost planar Archimedean dipole antenna for batteryless transcranial direct current stimulation devices. The antenna parameters including resonance frequency, radiation efficiency, radiation pattern, and gain are simulated using finite difference time domain based electromagnetic simulation software XFdtd. The proposed antenna is simulated with low-cost FR4 PCB substrate of thickness of 1.6 mm. The antenna is designed with half wavelength of resonant frequency and fed with a matching line. The target frequency band is the industrial, scientific and medical (ISM) band of 915 MHz which is in the simulated band width of 31 MHz (903-934MHz). Moreover, since the bio-effect of specific absorption rate by radio frequency electromagnetic wave for power harvesting is an important concern, we try to find out the safety limit. Thus a quantitative analysis of distributions of electric field and power absorption in anatomical human head model by the far field radio frequency energy received by our designed antenna has been presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm × 12.5 mm × 1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of -10 dB. A dielectric substrate of FR-4 of εr = 4.8 and δ = 0.015 with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) 14N coherences via spy 1H nuclei. These 1H-{14N} D-HMQC sequences differ not only by the order of 14N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the 14N Larmor frequency, ν0(14N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0(14N) or at the 14N overtone frequency, 2ν0(14N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different 1H-{14N} D-HMQC sequences, including those with 14N rectangular pulses at ν0(14N) for the indirect detection of homo-nuclear (i) 14N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the 14N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and l-histidine.HCl monohydrate, which contain 14N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the 1H-{14N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of 14N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone 1H-{14N} D-HMQC experiment increases for larger quadrupole interactions.