28 resultados para Radio relay systems

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research addressed performance issues for wireless signal transmission and has shown that performance improves with the help of relays due to increased diversity. Further, the areas of antenna selection and channel estimation and modelling has been investigated for improved cost and complexity and has shown to further enhance the performance of the wireless relay systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-way relaying systems are known to be capable of providing higher spectral efficiency compared with one-way relaying systems. However, the channel estimation problem for two-way relaying systems becomes more complicated. In this paper, we propose a superimposed channel training scheme for two-way MIMO relay communication systems, where the individual channel information for users-relay and relay-users links are estimated. The optimal structure of the source and relay training sequences are derived when the mean-squared error (MSE) of channel estimation is minimized. We also optimize the power allocation between the source and relay training sequences to improve the performance of the algorithm. Numerical examples are shown to demonstrate the performance of the proposed channel training algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the channel estimation problem for two-way multiple-input multiple-output (MIMO) relay communication systems in frequency-selective fading environments. We propose a superimposed channel training algorithm to estimate the individual channel state information (CSI) of the first-hop and second-hop links for two-way MIMO relay systems with frequency-selective fading channels. In this algorithm, a relay training sequence is superimposed on the received signals at the relay node to assist the estimation of the second-hop channel matrices. The optimal structure of the source and relay training sequences is derived to minimize the meansquared error (MSE) of channel estimation. We also derive the optimal power allocation between the source and relay training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described by the complex-exponential basis expansion model (CE-BEM). We propose a superimposed channel training algorithm to estimate the individual first-hop and second-hop time-varying channel matrices for MIMO relay systems. In particular, the estimation of the second-hop time-varying channel matrix is performed by exploiting the superimposed training sequence at the relay node, while the first-hop time-varying channel matrix is estimated through the source node training sequence and the estimated second-hop channel. To improve the performance of channel estimation, we derive the optimal structure of the source and relay training sequences that minimize the mean-squared error (MSE) of channel estimation. We also optimize the relay amplification factor that governs the power allocation between the source and relay training sequences. Numerical simulations demonstrate that the proposed superimposed channel training algorithm for MIMO relay systems with time-varying channels outperforms the conventional two-stage channel estimation scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2002-2012 IEEE. In this paper, we investigate the channel estimation problem for two-way multiple-input multiple-output (MIMO) relay communication systems in frequency-selective fading environments. We apply the method of superimposed channel training to estimate the individual channel state information (CSI) of the first-hop and second-hop links for two-way MIMO relay systems with frequency-selective fading channels. In this algorithm, a relay training sequence is superimposed on the received signals at the relay node to assist the estimation of the second-hop channel matrices. The optimal structure of the source and relay training sequences is derived to minimize the mean-squared error (MSE) of channel estimation. Moreover, the optimal power allocation between the source and relay training sequences is derived to improve the performance of channel estimation. Numerical examples are shown to demonstrate the performance of the proposed superimposed channel training algorithm for two-way MIMO relay systems in frequency-selective fading environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-way relaying systems are known to be capable of providing higher spectral efficiency compared with one-way relaying systems. However, the channel estimation problem for two-way relaying systems becomes more complicated. In this paper, we propose a superimposed channel training scheme for two-way MIMO relay communication systems, where the individ-ual channel information for users-relay and relay-users links are estimated. The optimal structure of the source and relay training sequences are derived when the mean-squared error (MSE) of channel estimation is minimized. We also optimize the power allocation between the source and relay training sequences to improve the performance of the algorithm. Numerical examples are shown to demonstrate the performance of the proposed channel training algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a blind channel estimation and signal retrieving algorithm for two-hop multiple-input multiple-output (MIMO) relay systems. This new algorithm integrates two blind source separation (BSS) methods to estimate the individual channel state information (CSI) of the source-relay and relay-destination links. In particular, a first-order Z-domain precoding technique is developed for the blind estimation of the relay-destination channel matrix, where the signals received at the relay node are pre-processed by a set of precoders before being transmitted to the destination node. With the estimated signals at the relay node, we propose an algorithm based on the constant modulus and signal mutual information properties to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, the proposed algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optimal source precoding matrix and relay amplifying matrix have been developed in recent works on multiple-input multiple-output (MIMO) relay communication systems assuming that the instantaneous channel state information (CSI) is available. However, in practical relay communication systems, the instantaneous CSI is unknown, and therefore, has to be estimated at the destination node. In this paper, we develop a novel channel estimation algorithm for two-hop MIMO relay systems using the parallel factor (PARAFAC) analysis. The proposed algorithm provides the destination node with full knowledge of all channel matrices involved in the communication. Compared with existing approaches, the proposed algorithm requires less number of training data blocks, yields smaller channel estimation error, and is applicable for both one-way and two-way MIMO relay systems with single or multiple relay nodes. Numerical examples demonstrate the effectiveness of the PARAFAC-based channel estimation algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In conventional two-phase channel estimation algorithms for dual-hop multiple-input multiple-output (MIMO) relay systems, the relay-destination channel estimated in the first phase is used for the source-relay channel estimation in the second phase. For these algorithms, the mismatch between the estimated and the true relay-destination channel affects the accuracy of the source-relay channel estimation. In this paper, we investigate the impact of such channel state information (CSI) mismatch on the performance of the two-phase channel estimation algorithm. By explicitly taking into account the CSI mismatch, we develop a robust algorithm to estimate the source-relay channel. Numerical examples demonstrate the improved performance of the proposed algorithm. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we integrate two blind source separation (BSS) methods to estimate the individual channel state information (CSI) for the source-relay and relay-destination links of three-node two-hop multiple-input multiple-output (MIMO) relay systems. In particular, we propose a first-order Z-domain precoding technique for the blind estimation of the relay-destination channel matrix, while an algorithm based on the constant modulus and mutual information properties is developed to estimate the source-relay channel matrix. Compared with training-based MIMO relay channel estimation approaches, our algorithm has a better bandwidth efficiency as no bandwidth is wasted for sending the training sequences. Numerical examples are shown to demonstrate the performance of the proposed algorithm. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple distributed power control algorithm for communication systems with mobile users and unknown time-varying link gains is proposed. We prove that the proposed algorithm is exponentially converging. Furthermore, we show that the algorithm significantly outperforms the well-known Foschini and Miljanic algorithm in the case of quickly moving mobile users.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple distributed power control algorithm for communication systems with mobile users and unknown timevarying link gains is proposed. We prove that the proposed algorithm is exponentially converging. Furthermore, we show that the algorithm significantly outperforms the well-known
Foschini and Miljanic algorithm in the case of quickly moving mobile users.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a framework to design robust transmit power controllers in cellular radio systems. The robust controllers designed are able to guarantee the quality of service (QoS) by keeping the carrier-to-inference-plus-noise ratio (CIRN) above a desired level in face of network link gain variations. The controller design problem is solved by solving a noncooperative dynamic game between the controller and unknown link gain variations.